
RLM Embedded Reference Manual

RLM Embedded v13.0

February, 2019

RLM Embedded Reference Manual Page 1 of 157

RLM Embedded Reference Manual

V13.0

 February, 2019

RLM Embedded Documentation - Copyright (C) 2006-2019, Reprise Software, Inc

RLM - Reprise License Manager - Copyright (C) 2006-2019 Reprise Software, Inc

Reprise License Manager TM
Copyright © 2006-2019, Reprise Software, Inc. All rights reserved.

Detached Demo, Open Usage, Reprise License Manager, and Transparent License Policy are all trademarks
of Reprise Software, Inc.

FLEXlm is a trademark of Macrovision Corporation.

RLM contains software developed by the OpenSSL Project for use in the OpenSSL Toolkit
 (http://www.openssl.org)
Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

RLM contains software (the GoAhead WebServer) developed by GoAhead Software, Inc. (http://www.goahead.com)

Some RLM documentation is produced with TiddliWiki (Copyright (c) Osmosoft Limited, 14 April 2005)

The rlmid1 devices are manufactured by Aladdin Knowledge Systems, Inc. (SafeNet, Inc.)

RLM Embedded Reference Manual Page 2 of 157

http://www.openssl.org/
javascript:;
http://www.goahead.com/

Table of Contents

Section 1 – License Management Introduction

Introduction to License Management... 6
License Models ... 9

Section 2 – RLM Embedded Basics

Welcome .. 12
What's New in RLM Embedded v13.0 14
Installing RLM Embedded .. 15
Integrating RLM Embedded Into Your Product 22
Best Practices for RLM Embedded Integration......................... 37
The License File .. 39
Creating Licenses ... 48
Creating Licenses – rlmgen ... 51
End User Installation .. 54
Pre-Release Checklist ... 56

Section 3 – Advanced Topics

Upgrading to a New Version of RLM Embedded........................ 58
Using RLM Embedded with Languages other than C/C++........ 59
Debugging Licensing Problems in the Field 63
Alias Licenses …...................................….................................... 66
ISV-defined Hostid Processing …...................................…........ 69
Shipping Your Product as a Library or a Plugin 70
Internet Activation ... 72
Virtualization ….. 73
Securing Your Application…... 74
How RLM Clients Find the License….. 75
Wide Character Support….. 76

Section 4 – Reference Material

Appendix A – RLM Embedded API ,.................... 78
Appendix B – RLM Status Values .. 133
Appendix C – RLM Example Client Program 140
Appendix D – Example rlm_isv_config() …............................... 142
Appendix E – RLM Hostids …………………………….....…... 148
Appendix F – Optional Hostid Installation Instructions….….. 151
Appendix G - Release Notes ...153
Appendix H - Frequently-Asked Questions 157

RLM Embedded Reference Manual Page 3 of 157

RLM Embedded Reference Manual

Reprise License Manager TM

Copyright © 2005-2018, Reprise Software, Inc. All rights reserved.

RLM Embedded Reference Manual Page 4 of 157

Section 1 – License Management
Introduction

This section of the manual contains the information which applies to
most license managers. If you are new to License Management, we

suggest you review these two chapters first.

RLM Embedded Reference Manual Page 5 of 157

Introduction to License Management

If you have used other license management products, you can skip this chapter. If you are new to
license management, however, we have included an overview of how license management
products operate.

The purpose of a license manager is to allow a software vendor (ISV) to flexibly price and license
their product(s) for delivery to their customers. At their most basic level, license managers like
RLM Embedded allow an ISV to deliver concurrent-use (floating) or fixed (node-locked) licenses
to their customers. In the case of node-locked licenses, no license server is needed with RLM
Embedded and other advanced license managers. Most license managers offer many other license
types for delivery to customers, and these vary from license manager to license manager. The
next chapter, License Models, describes the various way you can license your software with RLM
Embedded.

License managers differ from Copy Protection because license managers give advantages to the
ISV's customers as well. License managers allow your customer's organization to know that they
are using purchased software within the license limits set by you, their ISV. In addition, license
managers collect usage information (at the customer's option) for later reporting and analysis. If
your license manager is open and transparent, this usage information is provided in a fully-
documented report log format.

First, a few definitions

Term How used in this manual

license manager a software component which keeps track of the right to use a software product

product Your software

product name The name used by the product to request it's license

license The right to use a product, incorporated into a short text description. Referred
to by the product name

check out The act of requesting a license for a product

check in The act of releasing the license for a product

node-locked
(license)

A license which can be used only on a particular specified computer

floating (license) A license which can “float” on a network, in other words, one which can be
used by anyone who can access the license server

license server Part of the license manager which controls access to licenses. The License
Server is an optional component, typically only required when floating licenses
are used

ISV Independent Software Vendor, i.e., your company

RLM Embedded Reference Manual Page 6 of 157

Hostid An identification for a particular computer used by the license manager to
either node-lock a particular application, or to specify where the license server
can run.

License Manager Overview

License managers control the allocation of licenses to use software products. They do this by
allowing a product to check out and check in a named license. The license manager keeps track of
which users and computers can use these licenses, and, if the license is a floating license, the
license manager keeps track of how many copies of the license are in use.

Most license managers provide APIs with calls to control many of the aspects of licensing
behavior. In addition, license managers provide license administration options to control the
behavior of the license servers. These options are specified in server option files or via command-
line or web-based administration tools.

First-generation license managers (such as FLEXlm and NetLS) took the approach of providing
extremely complex APIs and internal license server options to control license policy, with
relatively less control contained in the licenses themselves.

Unlike the first-generation license managers, the design philosophy of RLM Embedded is to
preserve the simplicity of the system for both ISVs and license administrators by avoiding all
unnecessary options in the client library and the license servers and moving as many of these
options to the license file as possible, where they are visible and understandable by everyone.

In general, even when API calls are available to control it, it is good practice to keep license
policy out of the application and the license server, and place it into the license itself, to the extent
that the license manager allows this to be done. This makes for a more understandable licensing
system for both ISVs and license administrators. This results in much more standard behavior of
application licensing from ISV to ISV. The Reprise team learned this the hard way when we
supported thousands of FLEXlm customers in the past, and we applied these lessons to the design
of RLM Embedded.

License Types and Attributes

Commercial license managers will allow an ISV to control the use of their licenses using various
License Types. The most popular license types are:

 node-locked (runs on a specified node only)

 floating (available anywhere on a network, up to a concurrent usage limit)

 token or package-based

Another common license type is metered (i.e. a limited number of executions or limited time of
execution).

In addition, most licenses will contain various attributes which further restrict their use. Some
common attributes are:

RLM Embedded Reference Manual Page 7 of 157

◦ expiration date

◦ highest available software version

◦ start date

◦ named-user (i.e., the license can only be used by a particular user)

◦ allowed platform for the application.

License Manager Components

Most commercial license managers consist of 3 components:

 A client library (or wrapper)

 A license server, and

 A license description repository (typically a license file)

RLM Embedded is similar in structure to most popular license managers. RLM Embedded uses
the client library, rather than the wrapper approach. The RLM Embedded license servers consist
of a pair of servers – the generic rlm server along with an ISV-specific server. Finally, RLM
Embedded uses a license file as the repository for license descriptions.

While some license managers require the license server in all cases, RLM Embedded node-locked
licenses do not require a license server – only your application and the license file.

How To Deliver Licenses To Your Customer

Typically, licenses are delivered in text form to license administrators. Long ago, this was done
via phone/fax/magnetic media. Today, the most common license delivery mechanism is the
internet, either via email or automatic activation from an activation server at the ISV site.

RLM Embedded licenses are always 100% ascii text, and can be delivered by any convenient
means, however email and activation are by far the most common delivery mechanisms.

RLM Embedded Reference Manual Page 8 of 157

License Models

In the previous chapter we talked about License Types and Attributes. The license types and
attributes which are supported by your license manager are the building blocks which you use to
create the License Models your company will use. These License Models are what you will then
use to price and deliver your software.

The most important thing you will do when selecting a license manager is to pick one with a
sufficiently rich set of license types and attributes in order to allow you to create the License
Models you need, not only for today, but for the future. If your license manager isn't
sufficiently flexible, then your marketing department will become increasingly frustrated
because they will not be able to offer your software with the terms and conditions which can
lead to increased sales.

What exactly is a License Model?

Put most simply, a License Model is a set of terms and conditions which your license manager
enforces. For any given set of terms and conditions (i.e., the particular License Model), your
company has a set of pricing guidelines for the sale of the product.

Let's take a simple example. Your company may sell your software in two different ways – a
floating (concurrent use) license for $3000, and a node-locked license for $1200. In this case, the
License Model could be called either floating or node-locked. (Note that floating licenses are
supported by RLM, but not by RLM Embedded).

It is important to your development organization that changes to the license model do not
result in code changes. This is also important to sales and marketing, who will want to try
different License Model offers without having to wait for a new software release.

We will discuss a few common License Models in the remainder of this chapter, and with each
one, we will list the RLM Embedded license attributes that are used to implement it. Don't worry
if you do not understand the RLM Embedded nomenclature, this will make more sense after you
read the chapter describing The License File on page 39.

Node-locked License

A node-locked license is a license grant which allows the software to be used on a particular
computer, and on that computer only. Most typically, this license is uncounted, meaning that if
the software is running on the specified computer, any number of instances are allowed to execute.

In RLM
Embedd
ed

set the count field of the license to “uncounted” or “0”, and specify the hostid of the
computer in the actual license. Typically, node-locked uncounted licenses do not
require a license server, so they are very simple to deploy.

RLM Embedded Reference Manual Page 9 of 157

Node-locked, Single Use License

A variant of the node-locked uncounted license, it is sometimes desirable to allow only a single
instance of the software to run on a particular computer.

In RLM
Embedd
ed

set the count field of the license to single, and specify the hostid of the computer in the
actual license.

“Maintenance-Thru-Date” License

Many ISVs wish to issue a license to their customer which allows the customer to run (forever)
any version of the software which is released through a particular date, e.g. one year into the
future. If the ISV releases a new version in 11 months, the customer can use this version as well,
but no version which is released more than 12 months later. This is accomplished by what we call
a “date-based” version.

In RLM
Embedd
ed

set the version field of the license to a date, in the format yyyy.mm, and specify the
release date in your call to rlm_checkout() in the same format. When you issue
licenses, issue them with a version number corresponding to the expiration of their
support. So, for example, if you want to issue one-year supported licenses, in May of
2013, you would issue licenses of version 2014.05. When you release your software in
December of 2013, you would request version 2013.12 Note that while it is possible to
use other date formats, the format above is used by RLM Activation Pro.

RLM Embedded Reference Manual Page 10 of 157

Section 2 – RLM Embedded Basics

This section of the manual contains the information you need to
license and deploy your application using the RLM Embedded

license manager.

RLM Embedded Reference Manual Page 11 of 157

Welcome

Welcome to RLM Embedded, the newest license manager brought to you by the people who
developed FLEXlm®.

The RLM documentation is divided into 7 manuals:

Standard RLM Components

◦ RLM Embedded Getting Started Guide - an introduction to the basic concepts of license
management and RLM Embedded

◦ RLM Embedded Reference Manual (this manual)- the complete reference to RLM
Embedded

◦ RLM Getting Started Guide - an introduction to the basic concepts of license management and
RLM

◦ RLM Reference Manual - the complete reference to all core RLM components
◦ RLM License Administration Manual - The License Administration manual, suitable for

shipment to your customers

Optional RLM Components

◦ RLM Activation Pro Getting Started Guide – An Introduction to the RLM Activation Pro
software

◦ RLM Activation Pro Manual - Reference for the Optional RLM Activation Pro software

All seven manuals are available at the Reprise Website:

http://www.reprisesoftware.com/kits/RLM_Getting_Started_Guide.pdf
http://www.reprisesoftware.com/kits/RLM_Embedded_Getting_Started_Guide.pdf
http://www.reprisesoftware.com/kits/RLM_Reference.pdf
http://www.reprisesoftware.com/kits/RLM_Embedded_Reference.pdf
http://www.reprisesoftware.com/kits/RLM_License_Administration.html
http://www.reprisesoftware.com/kits/RLM_Activation_Pro_Getting_Started_Guide.pdf
http://www.reprisesoftware.com/kits/RLM_Activation_Pro.pdf

Integrating RLM Embedded into your product

As an ISV you integrate RLM Embedded by adding calls from the RLM Embedded client library
into your application. Only if you plan to ship concurrent-use (floating) licenses will you also
configure and build a license server. You then ship your product plus a few additional components
of the RLM Embedded license system, as required. You can accomplish the engineering portions
of these tasks in less than an hour – the hardest work is deciding what to license, and what license
rights to grant to your customers. Once you integrate RLM Embedded, the additional components
you ship are:

◦ a license file to describe your customer’s rights to the product (custom-generated for each of

your customers)
◦ the rlm utilities (rlmutil) provided by Reprise Software.

Except for the license file, the components are the same for every one of your customers. The
actual license file, which describes your customer’s rights to the product, will (in almost all cases)
be different for every one of your customers.

RLM Embedded Reference Manual Page 12 of 157

http://www.reprisesoftware.com/kits/RLM_Activation_Pro.pdf
http://www.reprisesoftware.com/kits/RLM_Activation_Pro_Getting_Started_Guide.pdf
http://www.reprisesoftware.com/kits/RLM_License_Administration.html
http://www.reprisesoftware.com/kits/RLM_Embedded_Reference.pdf
http://www.reprisesoftware.com/kits/RLM_Reference.pdf
http://www.reprisesoftware.com/kits/RLM_Embedded_Getting_Started_Guide.pdf
http://www.reprisesoftware.com/kits/RLM_Getting_Started_Guide.pdf

When deployed to support node-locked licensing, no network connection nor license server
processes are needed.

What sets RLM Embedded apart?

RLM was designed from the start to emphasize openness, transparency, and simplicity.

RLM is open because we publish the format of our license file, so that you, or your license
administrators can always examine and understand licensing activity.

RLM is transparent in the sense that we do not allow "back doors" which lead to unique
behaviors from one ISV to another. In addition, we have removed policy from the application
code, and placed it into the license key itself, so that your license administrators will be able to
understand the license terms without having to understand your implementation.

RLM is simple because we have kept the API to a minimum, and placed the license policy where
it belongs – in the license file itself, where it is handled by RLM, not by your code.

Table of Contents

RLM Embedded Reference Manual Page 13 of 157

What's New in RLM Embedded v13.0

This section lists the new features along with pointers to the relevant sections in the manual. New
license administration features are described in the License Administration manual.

What's new

• The UUID hostid type is now available on 64-bit Mac systems (x64_m1). See Appendix E –
RLM Hostids on page 148 for more information.

New License Keywords

 None

API additions

 The rlm_product_start() call is added. See rlm_products() on page 125 for more information.

API changes

• None

Activation changes

 RLM Activation Pro has new features. Please see the Activation Pro manual for details.

License Administration Options file changes

 None.

Table of Contents

RLM Embedded Reference Manual Page 14 of 157

Installing RLM Embedded

To install RLM Embedded, follow these steps:

 First, Download the kit from the Reprise website

To download RLM Embedded, go to the Reprise Website Download area, enter your username
and password, and select the kit(s) you want to download. Save these on your system, then
uncompress and (on unix) extract the binaries with the tar xvf command. [Note that there is not a
separate RLM Embedded kit – RLM Embedded is controlled by a license from Reprise Software,
and you use the standard RLM kit.]

Each kit has a descriptive name on the website. The file names of the kits follow Reprise
Software's platform naming conventions, with ".tar.gz" (Unix) or ".exe" (Windows) appended:

Platform Platform Name Kit file name

HP-UX on PA-Risc hp_h1 hp_h1.tar.gz

HP-UX 64-bit on PA-Risc hp64_h1 hp64_h1.tar.gz

IBM AIX 32-bit ibm_a1 ibm_a1.tar.gz

IBM AIX 64-bit ibm64_a1 ibm64_a1.tar.gz

Linux on Intel X86 x86_l1, x86_l2 x86_l1.tar.gz, x86_l2.tar.gz

Linux 64-bit on Intel x64_l1 x64_l1.tar.gz

Mac on Intel X86 x86_m1 x86_m1.tar.gz

Mac on PPC ppc_m1 ppc_m1.tar.gz

Solaris 32-bit on Intel x86_s1 x86_s1.tar.gz

Solaris 64-bit on Intel x64_s1 x64_s1.tar.gz

Solaris on Sparc sun_s1 sun_s1.tar.gz

Solaris 64-bit on Sparc sun64_s1 sun64_s1.tar.gz

Windows 64-bit (visual C 2010-2013) x64_w3 rlm.vX.YBLZ-x64_w3.exe

Windows 32-bit (visual C 2010-2013) x86_w3 rlm.vX.YBLZ-x86_w3.exe

Windows 64-bit (visual C 2015 and later) x64_w4 rlm.vX.YBLZ-x64_w4.exe

Windows 32-bit (visual C 2015 and later) x86_w4 rlm.vX.YBLZ-x86_w4.exe

Java for Unix (requires x86_l2, x64_l1, or
x86_m1 kit. x86_l2 only prior to RLM v6)

java_unix java_unix.tar.gz

Note: When downloading Unix or Mac kits using Internet Explorer on Windows XP systems, the
files are incorrectly named as 'platform.tar.tar', rather than 'platform.tar.gz', once downloaded. This
is a browser issue - after transfer, please rename the file before installation.

 Next, unpack the kit and install

• For the majority of cases using a C-compiler, follow the instructions in this section.
• For information on using RLM with Java, see Using RLM Embedded with Languages other

than C/C++ on page 59.
• For information on using RLM Embedded in a cross-development environment, see Building

the RLM Embedded kit using a cross-compiler on page 17.

RLM Embedded Reference Manual Page 15 of 157

http://www.reprisesoftware.com/kits/isvs-download.php

To unpack the kit and perform the installation, follow these steps:

At the shell prompt on Unix:
 % gunzip platform.tar.gz
 % tar xvf platform.tar
 % ./INSTALL
 % # update src/license_to_run.h if required
 % # Your license for RLM comes via email from Reprise Software.
 % # RLM kits are pre-built with demo licenses valid for
 % # approximately two months from date of release.
 % cd platform
 % make

Note: RLM requires a license to operate from Reprise Software.

On Windows, the kit is in a Windows installer executable. Run the installer, whose name is
rlm.vver-platform.exe, where ver is the RLM version and platform is the RLM platform name.
For example, rlm.v13.0BL1-x86_w4.exe is the installer for v13.0BL2 on the x86_w4 (Windows
32-bit, VS2015 and above) platform. The installer asks where you would like to install RLM - the
default is in your My Documents folder. The installer will create the folder Reprise\rlm.ver-
platform (where ver and platform are as above) in your My Documents folder if you take the
default.

You have the option in the Windows installer to specify that you would like the installer to copy
your key pair from another RLM installation into the new installation area. This is useful if you
are upgrading your RLM version or installing RLM on another system at the same release level,
and wish to use the same key pair so as to have compatible license signatures across the
installations. If you do not wish to specify the location of another key pair, leave the box blank.

RLM kits are pre-built for ISV "demo", with licenses that expire in 30-60 days after the release date. If
your demo license has expired, you will need to put the new license you received from Reprise Software
into the file src\license_to_run.h. If you have purchased RLM, you will need to edit src\license_to_run.h to
replace the license there with your permanent license, and you will also need to edit src\rlm_isv_config.c
and the makefile in the binary directory (x86_w* or x64_w*) to change your ISV name. If you plan to use
the example license file example.lic in the platform directory, edit the file, and change all instances of
"demo" to your ISV name.

Note: RLM requires a license to operate from Reprise Software.

You have 2 options for building RLM on Windows - you can either use a Visual Studio or Visual C++
Project, or a Command Window. Each method has the same outputs; choose the method you’re more
comfortable with.

To build using Visual Studio/Visual C++:

1. The platform directories (x86_w* and x64_w*) contain Microsoft Visual Studio or
Visual C++ project and workspace files. Double-click on the appropriate file to launch
Visual Studio/Visual C++. In x86_w3, double-click on x86_w3.vcproj. In x64_w4,
double-click on x64_w4vcproj, etc.

2. When the development environment comes up, click on the Build menu and select
"Rebuild All" (Visual C++) or "Build Solution" (Visual Studio).

RLM Embedded Reference Manual Page 16 of 157

When the build is done, the output window should indicate 0 errors and warnings.

You may be prompted to allow Visual C++ to convert the project to a later
version. Allow it to do so, then proceed.

To build using a Command Window:

1. Create a command window with the Visual C++ environment set up
◦ Create a command window and run a batch file provided by Microsoft to set up

your command window for the next step. The batch file is Program Files
[(x86)]\Microsoft Visual Studio <version>\VC\vcvarsall.bat
-OR-

◦ Create a command window via the Start->MS VisualStudioxxx or Start->MS
Visual C++ menu. The specific sub-menu items vary with version but the target
is "Visual Studio Comand Prompt".

2. cd to the platform directory of the SDK, for example
cd x86_w3

3. Type nmake

A note about OpenSSL

Note: as of v12.0 on Linux and v12.2 on Windows, RLM uses a private name space for the OpenSSL
routines, so the need to remove those modules from the RLM library to avoid conflicts with other
OpenSSL implementations that you link into your application has gone away, and you can ignore the
remainder of this paragraph. If you are using an earlier version of RLM and wish to build a client library
on Unix systems which does not contain any of the OpenSSL library routines, execute the make
rlm_nossl.a command after installing your kit. The resulting library can be used to link your application if
you use OpenSSL as part of your application and you use a different OpenSSL version.

Building the RLM Embedded kit using a cross-compiler

On certain platforms (e.g. arm_l1 and xpi_l1), the rlm kit must be cross-compiled on a host system
which doesn't run the target instruction set. For these platforms, follow the directions here (Note:
these directions are for Unix systems only, to do cross-development on Windows, you are on your
own. See the makefile):

To unpack the kit and perform the installation, follow these steps:

At the shell prompt on Unix:

 % gunzip platform.tar.gz
 % tar xvf platform.tar
 % ./INSTALL
 % # update src/license_to_run.h if required
 % # Your license for RLM comes via email from Reprise Software.
 % # RLM kits are pre-built with demo licenses valid for
 % # approximately two months from date of release.
 % cd platform

RLM Embedded Reference Manual Page 17 of 157

At this point, on a “normal” RLM platform, you would simply type “make”. However, in a cross
development environment, the make process is split into 4 or 5 steps. In these instructions, we
will refer to the two systems as the host (the system with the cross-development tools), and the
target - the target system which does not have development tools.

1. First, on the host system (the one with the cross-development tools):

% make step1

2. Next, copy rlmgenkeys to the target; run rlmgenkeys; copy rlm_privkey.c and
rlm_pubkey.c back to the host system into the src directory.

3. Next, on the host system:

% make step3

4. Next, copy the kit (the whole directory, e.g. arm_l1) to the target

5. Next, on the target: (optional, only if you have a full client-server RLM kit).

% make step5

Your kit is now built on the target and ready to use.

 Note: skip steps 1 and 2 if you have a key pair from another rlm platform, and put the keys into
the src directory on the host system; start from step 3 above. Skip step 5 if you have a client-only
kit, or if you do not care about creating an ISV.set settings file.

RLM kit layout

Each RLM kit (for a particular platform) is contained in 3 or 5 subdirectories:

 Machine-independent subdirectory (src)
 Machine-independent examples subdirectory (examples)
 Machine-dependent subdirectory (name varies for each platform)

In addition, on Windows, there is an additional directory:

 a directory of .NET support files called "dotnet".

The platform names for RLM follow the convention:

arch_[os][ver]

where:

• arch is the Reprise Software name for the processor/chip architecture

• os is the Reprise Software identifier for the operating system, and

• ver is the Reprise Software identifier for our version of rlm OS support (note: this is NOT
the operating system version)

RLM-Embedded is a subset of RLM, so you will use the full RLM kit.

Current RLM platform names are:

Platform Directory Name Notes

HP-UX on PA-Risc hp_h1

HP-UX 64-bit on PA-Risc hp64_h1

RLM Embedded Reference Manual Page 18 of 157

IBM AIX 32-bit ibm_a1

IBM AIX 64-bit ibm64_a1

Linux on ARM arm_l1 Client-only kit

Linux on Intel X86 x86_l1, x86_l2

Linux (64-bit) on Intel x64_l1

Linux on PPC ppc_l1, ppc64_l1

Linux on Xeon PI coprocessor xpi_l1 Client-only kit

MAC on Intel X86 x86_m1

MAC (64-bit) on X86 x64_m1

MAC on PPC ppc_m1

Solaris (32-bit) on Intel x86_s1

Solaris (64-bit) on Intel x64_s1

Solaris on Sparc sun_s1

Solaris (64-bit) on Sparc sun64_s1

Windows 32-bit x86_w3 Visual Studio 2010-2013

Windows 32-bit x86_w4 Visual Studio 2015 and later

Windows 64-bit x64_w3 Visual Studio 2010-2013

Windows 64-bit x64_w4 Visual Studio 2015 and later

RLM Kit Contents

The Machine Independent (src) directory contains:

File Contents

license.h rlm include file

license_to_run.h License for RLM itself

rlm_admin.h Admin API include file (optional product)

rlm_isv_config.c Configuration data for RLM Embedded

RELEASE_NOTES Release notes for this version of RLM

RLM_Reference.txt Pointer to RLM documentation on website

VERSION RLM kit version information (not on client-only kits)

The Machine Independent (examples) directory contains:

File Contents

act_api_example.c Sample client-side activation code

activation_example.html Sample HTML page for activation

actpro_demo.c Demo program for activation pro

detached_demo.c Sample code to implement a Detached Demotm.

example.opt Example license administration option file

integrate_older.c Example code for integrating RLM alongside an older LM

isv_hostid_example.c Example rlm isv-defined hostid

rehost_example.c Example for using rehostable hostids and revoking them

RLM Embedded Reference Manual Page 19 of 157

rlm_transfer.c Example ISV-defined server transfer code

rlmclient.c Example rlm application program

roam_example.c Example code to implement license roaming

unsuppoprted
Directory of unsupported example programs (fortran

interface, python interface)

Each Unix Platform-dependent directory contains (before executing "make"):

File Contents Notes

example.lic Example license file Created by INSTALL

librlm.a Symbolic link to rlm.a

makefile Makefile

rlm The generic rlm server UNUSED

rlm.a RLM library

rlmanon RLM logfile anonomizer UNUSED

rlmmains.a RLM main() functions for misc programs

rlmutil RLM utilities

The Windows Platform-dependent directory contains (before executing "nmake"):

File Contents Notes

example.lic Example license file

isv_main.obj main() for ISV server UNUSED

isv_server.lib library for ISV server UNUSED

makefile Makefile

rlc.obj main() for Activation administration (rlc)

rlm.def RLM DLL export definitions

rlm.exe The generic rlm server UNUSED

rlm.res RLM version resource file

rlm_genlic.obj License generator object

rlm_mklic.obj main() for Activation license generator

rlmact.obj rlc object file

rlmanon.exe RLM logfile anonomizer UNUSED

rlmclient.lib RLM client library

rlmclient_md.lib RLM client library - compiled with /Md

rlmclient_mdd.lib RLM client library - compiled with /Mdd

rlmclient_mtd.lib RLM client library - compiled with /Mtd

rlmgen.obj rlc license generation module

rlmgenkeys.obj main() for rlmgenkeys utility

rlmsign.obj main() for rlmsign utility

rlmutil.exe RLM utilities

rlmverify.obj main() for RLM log file authentication UNUSED

RLM Embedded Reference Manual Page 20 of 157

utility

x86_w*.vcproj,
x64_w*.vcproj

Visual Studio/Visual C++ project for
configuring the kit

The Java directory (java_unix, java_win) is unused in RLM Embedded.

The dotnet directory (RLM .NET support – Windows only) contains:

File Contents

Reprise
Visual Studio 2005 Project Directory for RLM .net

support

RLMTest
Visual Studio 2005 Project Directory for RLM .net Test

program

Table of Contents

RLM Embedded Reference Manual Page 21 of 157

Integrating RLM Embedded Into Your Product

OVERVIEW - Software License Management Basics

If you have used other license management products, you can skip this section. If this is your first
time, however, we have included an overview of how license management products operate.

RLM Embedded is similar in structure to most popular license managers. RLM Embedded
consists of 3 major components:

1. a client library
2. license utilities
3. a text file which describes the licenses granted (the license file).

Your application is linked with the client library which provides access to the license management
functions.

The RLM client library (linked into your application) is controlled by license authorizations stored
in a text file called the license file.

Most license managers provide APIs with calls to control many of the aspects of licensing
behavior, as well as options within the license servers to control licensing behavior. The design
philosophy of RLM is to preserve the simplicity of the system for both ISVs and license
administrators by avoiding all unnecessary options in the client library and moving all these
options to the license file, where they are visible and understandable by everyone. In general,
license policy should be kept out of the application, and placed into the license itself. This makes
for a more understandable licensing system for both ISVs and license administrators. The API is
simpler, and more standard from ISV to ISV. This prevents license management confusion in
license administrators. We learned this the hard way when we supported hundreds of customers in
the past, and applied these lessons to the design of RLM.

INTEGRATING RLM Embedded Into Your Product - The 6 Steps

In order to add license management capabilities to your product, there are 6 main steps:

1. Decide on your Licensing Strategy

2. Create your Keys (public/private key pair)

3. Add RLM Embedded API calls to your application

4. Configure and build your RLM Kit

5. Package your software for shipment

6. Create licenses for your customers

These steps are described in the following sections.

RLM Embedded Reference Manual Page 22 of 157

1. Decide on your Licensing Strategy

RLM Embedded allows you to request and release licenses for products. The license for a product
has certain attributes, which are described in the license grant itself (which is contained in the
license file). The most basic license attributes are:

 ISV name (you pick this when you purchase RLM Embedded)
 Product name
 Highest Version supported
 the node identification for the license
 Expiration date

Before you integrate RLM Embedded into your application, you must decide which products you
wish to license and select the product names for the licenses. It is generally recommended that you
choose names that correspond very closely to the name which your customer purchases - it makes
license administration much more straightforward for your customers if the name of the product in
the license is the same as what they purchased. Note that the product name must be less than 40
characters.

In addition, each license request will specify a version. The two main strategies for selecting
versions are either (a) make the version number match the major version of your software, in
which case a new license would be required by your customers for each major release of your
product or (b) only change the version in the license request occasionally, when you want to force
your customers to purchase a new license.

So, before you start to integrate the code into your application, you should decide:

 Where do you want to request and release licenses
 What is the name of the license(s)
 What license version to request.

(Note: There is more information about these issues in the chapter on Creating Licenses.)

Generally, the first two decisions will stay the same over the life of the software product, while
you will update the license checkout version from time to time.

2. Create your Keys (public/private key pair)

Before you use RLM Embedded, you need to create a public-private key pair. You should only do
this one time, since the key pair will affect the licenses you create, and you want to be able to
process older license keys with newer versions of your software. Note that you should do this
once, not once per platform you install.

To create your key pair, run the rlmgenkeys utility. rlmgenkeys creates a pair of files:

 rlmpubkey.c - your public key - this gets built into your application and your ISV server
 rlmprivkey.c - your private key - this gets built into rlmsign to create your license keys

To run rlmgenkeys:

RLM Embedded Reference Manual Page 23 of 157

% cd kit-dir
% cd src
% ../platform-dir/rlmgenkeys

Where:
 kit-dir is the directory where the RLM kit resides, and
 platform-dir is the RLM binary directory for the machine on which you are running.

If you do not share src directories on your various platforms, run rlmgenkeys once and copy the
resulting files to all the other src directories you use. Once you have created your key pair and
installed it in the src directories in all your RLM kits, do a "make" in each kit to update the rlm.a
library.

You should be very careful with these two files. DO NOT LOSE THEM. Do not allow your
private key file (or rlmsign) outside your company. If your private key file (or rlmsign)
becomes compromised, others will be able to make licenses for your products. Once you generate
these files, you should copy them to a safe place where they will not be lost, and where they will
be secure.

When you upgrade to a newer version of RLM Embedded, you will be asked for the location of
these two files, so that the new version will generate compatible keys with your older versions.

3. Add RLM Embedded API calls to your application

Everything you need for most applications is contained in the 8 functions in the RLM Embedded
core API.

These functions are described in Appendix A – you can follow the links in the following table:

rlm_init() - initalize licensing operations with RLM.
rlm_close() - Terminate licensing operations with RLM.
rlm_checkout() - Request a license.
rlm_checkin() - Release a license.
rlm_errstring() - Format RLM status into a string.
rlm_stat()- Retrieve RLM_HANDLE status.
rlm_license_stat() - Retrieve RLM_LICENSE status.
rlm_get_attr_health() - Check license status.

If you have special licensing needs that are not addressed by these functions, see Appendix A –
RLM Embedded API on page 78 which lists all RLM Embedded API functions.

4. Configure and build your RLM Embedded Kit

There are 4 configuration items you must complete before you build your RLM Embedded kit:
 Install your RLM Embedded license.
 Create your public/private key pair, which is done one time only and which was done in
step #2, above. (See Create your Keys on page 23).
 Configure your RLM Embedded parameters.
 Modify the makefile to change the ISV name "demo" to your ISV name (if you previously
installed a demo kit). Note: you can skip this last step if you have an evaluation kit.

RLM Embedded Reference Manual Page 24 of 157

To install your RLM Embedded license, edit the file src/license_to_run.h, using the parameters
you received in the email from Reprise Software. (Note: RLM kits are pre-built with demo license
keys which expire in approximately 2 months from the date of kit release, so you may be able to
skip this step if you are evaluating RLM).

An example license_to_run.h file is shown here (this is a demo license which expired on 1-jul-
2007):

/**

 COPYRIGHT (c) 2007-2011 by Reprise Software, Inc.
 This software has been provided pursuant to a License Agreement
 containing restrictions on its use. This software contains
 valuable trade secrets and proprietary information of
 Reprise Software Inc and is protected by law. It may not be
 copied or distributed in any form or medium, disclosed to third
 parties, reverse engineered or used in any manner not provided
 for in said License Agreement except with the prior written
 authorization from Reprise Software Inc.

 ***/
/*
 * Description: License to use RLM
 *
 * Replace the RLM license on the four lines after:
 *
 * #define RLM_LICENSE_TO_RUN \
 *
 * with the license you received from Reprise Software.
 *
 *
 */

#ifdef RLM_LICENSE_TO_RUN
#undef RLM_LICENSE_TO_RUN
#endif

#define RLM_LICENSE_TO_RUN \
 "1-jul-2007 \
 sig=\"c2N250Z4hGt2HCMWNcye*Xe35YI8LGZf0ihLbEfJ8Bfe~zS0IFwu7R78Iye1ao\""

#define RLM_ISV_NAME "demo"

Your applications and your ISV license server are built from components supplied by Reprise
Software. You need to provide 2 custom inputs for the build:

 Your Public Key, for license key verification - rlm_pubkey.c - (This was done in step #2,
above. See Create your Keys on page 23).
 A file of RLM Embedded customizations called rlm_isv_config.c (this file is contained in
the src directory on the kit)

rlm_pubkey.c is created by the rlmgenkeys utility. You should run this only once to create your
public/private key pair. Once you create these files, save them - if you lose one of these files, you
will no longer be able to generate license keys compatible with older versions of your software.

Customizing RLM Embedded with rlm_isv_config

rlm_isv_config.c contains calls to:

RLM Embedded Reference Manual Page 25 of 157

 set up your ISV name
 install your RLM Embedded license (do not change this call)
 disable the RLM Embedded clock windback detection for expiring licenses
 enable or disable Windows disk serial numbers which require admin access to use
 register ISV-defined hostids
 include or exclude code for optional hostids (e.g., dongles, etc)
 specify the types of hostids which Activation Pro will accept
 specify the URL of your activation server (for Alternate Server Hostids)

 Edit this file before compiling your license generator or applications.

NOTE: your ISV name is case-insensitive.

Once you have created these 2 files you are ready to link your applications with the RLM libraries.

An example rlm_isv_config.c file is shown here. Note that there are many options which pertain
to license servers – you can ignore all of these for RLM Embedded:

/**

 COPYRIGHT (c) 2005, 2011 by Reprise Software, Inc.
 This software has been provided pursuant to a License Agreement
 containing restrictions on its use. This software contains
 valuable trade secrets and proprietary information of
 Reprise Software Inc and is protected by law. It may not be
 copied or distributed in any form or medium, disclosed to third
 parties, reverse engineered or used in any manner not provided
 for in said License Agreement except with the prior written
 authorization from Reprise Software Inc.

/**

 COPYRIGHT (c) 2005, 2014 by Reprise Software, Inc.
This software has been provided pursuant to a License Agreement
containing restrictions on its use. This software contains
valuable trade secrets and proprietary information of
Reprise Software Inc and is protected by law. It may not be
copied or distributed in any form or medium, disclosed to third
parties, reverse engineered or used in any manner not provided
for in said License Agreement except with the prior written
authorization from Reprise Software Inc.

 ***/
/*
 * Description: rlm_isv_config.c - configuration data for ISV
 *
 * M. Christiano
 * 11/25/05
 *
 */

#include "license.h"
#include "license_to_run.h"

/*
 * Define "INCLUDE_RLMID1" to include support for RLMID1 dongles.
 * Comment out to remove aladdin dongle support.
 *
 * Note: The RLMID1 dongle code is always included in
 * your license server. This setting is only for your applications, and
 * only needs to be set if you are issuing licenses that are nodelocked
 * to a dongle.
 *
 * Including the RLMID1 dongle code increases the size of

RLM Embedded Reference Manual Page 26 of 157

 * your applications by approx 900Kb on 32-bit windows, plus involves
 * a small delay at application startup time, even if you are not using
 * a dongle.
 *
 * If you are not planning to issue licenses which are node-locked to
 * rlmid devices, Reprise Software recommends leaving these options turned
 * off (ie, leave the "#if 0" on the next line).
 */

#if 0
#define INCLUDE_RLMID1
#endif

#ifdef INCLUDE_RLMID1
extern void _rlm_gethostid_type1(RLM_HANDLE, L_HOSTID);
#endif

void
rlm_isv_config(RLM_HANDLE handle)
{

/*
 * Set ISV name
 *
 * NOTE: IF you are evaluating RLM, DO NOT change the ISV
 * name, or your license keys will no longer work.
 * For eval kits, the name on the next line MUST
 * be "demo".
 *
 * NOTE: Your ISV name is, in general, case-insensitive.
 * The ONLY exception to this is when it is used as
 * a lockfile name using a FLEXlm-compatible lockfile.
 * In this case (and this case only), the case of the
 * name you enter here is important. Note that even in
 * this case, ONLY THE LOCKFILE NAME uses the exact case
 * you enter - every other place in RLM uses a lowercase
 * version of this name.
 *
 * Beginning in RLM v7.0, your ISV name is contained in
 * "license_to_run.h". If you need to alter the case of the
 * name for a compatible FLEXlm lockfile, you should do it there
 * and leave the next line as it is.
 *
 */
 rlm_isv_cfg_set_name(handle, RLM_ISV_NAME);

/*
 * Set RLM license - do not modify this line
 */
 rlm_isv_cfg_set_license(handle, RLM_LICENSE_TO_RUN);

/*
 * Set oldest allowed server version.
 *
 * The next setting controls the oldest RLM license server
 * version with which your application will work.
 *
 * The 3 parameters are rlm version, revision, and build (in
 * that order).
 *
 * If you leave this set to 0, 0, 0, your application will
 * attempt to work with the oldest available RLM server.
 *
 * You should only set this if you are concerned with an older
 * server in the field which has been hacked, otherwise, you should
 * leave it set to 0, 0, 0.
 *
 * (Note: Do not set this to anything between 0,0,0, and
 * 9,0,0). Servers older than v9.0 will appear to be v0.0)
 *
 */
 rlm_isv_cfg_set_oldest_server(handle, 0, 0, 0);

/*

RLM Embedded Reference Manual Page 27 of 157

 * Set ISV server settings file compatibility
 *
 * The next setting controls what versions of RLM your
 * ISV server settings file will work with. You can enable
 * it for all earlier versions (> v6), or later versions or both.
 * The 2nd parameter enables earlier versions if non-zero, the
 * 3rd parameter enables later versions if non-zero. Note that
 * "earlier" and "later" are relative to the version of your
 * settings file. So, if you create the settings file with RLM v8,
 * "earlier" means v6 and v7, while "later" means v9 and above.
 *
 * default is: rlm_isv_cfg_set_compat(handle, 0, 1); - sets compatibility
 * with later versions, but not earlier ones.
 */
 rlm_isv_cfg_set_compat(handle, 0, 1);

/*
 * Setup virtual machine enable/disable.
 *
 * By default (if you do not modify the following call), RLM
 * will refuse to run a license server on a virtual machine.
 * If you want license servers to run on virtual machines, set the 2nd
 * parameter of the next call to a non-zero value.
 *
 */
 rlm_isv_cfg_set_enable_vm(handle, 0);

/*
 * Beginning in RLM v10.0, roaming is disabled for servers that
 * use transient hostids (ie, dongles, or ISV-defined transient hostids).
 * If you want to enable roaming on these servers, set the 2nd
 * parameter of the next call to 1.
 */
 rlm_isv_cfg_set_enable_roam_transient(handle, 0);

/*
 * Beginning in RLM v10.0, you have the option of turning ROAMED
 * licenses into "single" licenses. Prior to RLM v10.0, all ROAMED
 * licenses were nodelocked, uncounted.
 * If you want your roamed licenses to be "single" licenses, set the
 * second parameter of the next call to 1.
 */
 rlm_isv_cfg_set_roam_single(handle, 0);

/*
 * Beginning in RLM v10.0 it is possible to disable the clock windback
 * check. In previous versions it was always enabled. Passing a 1 in
 * the second argument of the following function call disables the
 * windback check; passing 0 leaves it enabled (the default).
 */
 rlm_isv_cfg_disable_clock_windback_check(handle, 0);

/*
 * FLEXlm(R)-style lockfile compatibility.
 *
 * Set to non-zero to use a FLEXlm-style lockfile. For windows
 * systems, a value of 1 uses the 'C' drive always, whereas a
 * value > 1 will use the system drive. FLEXlm (up to version
 * 10.3, at least) puts the lockfile on the 'C' drive.
 *
 * Reprise Software recommends setting this to 1 if you want to
 * use FLEXlm-compatible lockfiles.
 */
 rlm_isv_cfg_set_use_flexlm_lockfile(handle, 0);

/*
 * The Windows disk serial number hostid code can return hostids
 * that are usable only by processes running with admin rights if
 * running with admin privileges. If an application is installed
 * and a license activated by an admin user, it's possible that
 * a non-admin user will not be able to use the application because
 * it can't read the disk serial number. Beginning in RLM v10.0,
 * you can disable the use of disk serial number hostids that are
 * usable by admins only. If you want to do so, change the second
 * parameter of the next function to 0.
 */
#ifdef _WIN32

RLM Embedded Reference Manual Page 28 of 157

 rlm_isv_cfg_set_use_admin_disksns(handle, 1);
#endif

/*
 * Beginning in RLM v10.0, RLM's license transfer capability also
 * allows for disconnected operation on the destination server.
 * This capability only requires that an "rlm_roam" license be
 * present on the destination server. You can ship an rlm_roam
 * license to your customer and have them install it on every
 * destination server, or you can simply put it into the next
 * call, in which case, no separate license file will be needed
 * on the destination license server.
 *
 * To enable this, set the 2nd parameter of the next call to a valid,
 * signed rlm_roam license (enclosed in "<>") in place of the
 * last argument. This license should be a static string
 * which is available for the lifetime of the server.
 *
 * This license MUST have the following parameters:
 * version: "1.0"
 * exp: "permanent"
 * count: "uncounted"
 * hostid: "any"
 * NO other parameters
 *
 * for example:
 *
 * rlm_isv_cfg_set_server_roam(handle, "<LICENSE rlm_roam your-isvname 1.0
uncounted hostid=any sig=xxxxxxx>");
 */
 rlm_isv_cfg_set_server_roam(handle, (char *) 0);

/*
 * Beginning in RLM v10.0, RLM can broadcast to find a license
 * server as a last resort, if all the normal methods to find
 * the server fail. This capability is enabled by default.
 *
 * To disable this, set the 2nd parameter of the next call to 1.
 */
 rlm_isv_cfg_disable_broadcast(handle, 0);

/*
 * Beginning in RLM v11.0, the client can specify that
 * it will not use a generic license server.
 * If you want to disable generic servers, set the 2nd
 * parameter of the next call to 1.
 * If you disable generic servers and your application
 * attempts to connect to a generic server, it will
 * receive an RLM_EH_SERVER_REJECT error upon connection.
 */
 rlm_isv_cfg_disable_generic_server(handle, 0);

/*
 * Beginning in RLM v10.1, licenses can be cached on the client
 * side with the use of the "client_cache" license attribute.
 * This capability must be enabled with the following call.
 * If the 2nd parameter is 1, client caching is enabled, if 0,
 * caching is disabled.
 * Note: this call has no effect on HP systems.
 */
 rlm_isv_cfg_enable_client_cache(handle, 1);

/*
 * Beginning in RLM v10.1, license servers can return one
 * valid license to the application which is then verified on
 * the client side. This check helps ensure that the license
 * server hasn't been modified. To enable this checking set
 * the second parameter of the next call to 1. If you enable
 * this, please read the section titled "Server Integrity Checking"
 * in the "Securing Your Application" section of the Reference
 * Manual so that you understand the errors which can be generated
 * as a result of this call and how you should proceed.
 */
 rlm_isv_cfg_enable_check_license(handle, 0);

/*
 * Beginning in RLM v11.0, you can specify which types of

RLM Embedded Reference Manual Page 29 of 157

 * hostids that Activation Pro will accept from an activation
 * request. Prior to v11.0, the only 6 types of acceptable
 * hostids were: rehostable, isv-defined, rlmid, ethernet,
 * disk serial numbers and native 32-bit hostids.
 * In the following call, you can set the default hostids that
 * your Actpro server will accept. To get the pre-v11 behavior,
 * set the 2nd parameter as shown. Hostid type definitions in license.h
 *
 */

#if 0
{
 int allowed_types = RLM_ACTPRO_ALLOW_REHOST | RLM_ACTPRO_ALLOW_ISV |
 RLM_ACTPRO_ALLOW_RLMID | RLM_ACTPRO_ALLOW_ETHER |
 RLM_ACTPRO_ALLOW_DISKSN | RLM_ACTPRO_ALLOW_32 |
 RLM_ACTPRO_ALLOW_ASH;

 rlm_isv_cfg_actpro_allowed_hostids(handle, allowed_types);
}
#endif

/*
 * Beginning in RLM v11.2, license servers can utilize
 * Alternate Server Hostids. These hostids are activated
 * from Activation Pro by the ISV server, which needs to
 * know the URL of the activation server.
 * If you use Reprise's hosted activation service, the default
 * (hostedactivation.com) is correct. For all others, set your
 * activation server url here. Note that this URL pointer must
 * remain valid as long as the RLM_HANDLE is in use.
 */
 /*** rlm_isv_cfg_set_url(handle, "hostedactivation.com"); ***/

/*
 * If you want to add ISV-defined hostids to the ISV server,
 * use code similar to the following for each new hostid type
 * you would like to add.
 */
#if 0

stat = rlm_add_isv_hostid
(

handle, /* RLM_HANDLE passed in */
"keyword here", /* Hostid keyword you chose */
YOU_DEFINE_HOSTID_TYPE, /* Your hostid type (int)

 > RLM_ISV_HID_TYPE_MIN */
transient, /* (int) == 0 if hostid does not

change.
 Non-zero if it does change, e.g., if
 your hostid is a dongle, it can
 change if someone unplugs it, so
 you should set transient non-zero */

get_type_hostid /* Your function to determine the
 hostid value */

);
if (stat)
{

printf("ERROR: add hostid type returns %d\n", stat);
}

#endif

/*
 * To include RLMID1 dongle code, be sure INCLUDE_RLMID1 is defined above.
 */

#ifdef INCLUDE_RLMID1
 rlm_isv_cfg_set_use_hostid(handle, RLM_HOSTID_RLMID1,
 _rlm_gethostid_type1);
#endif
}

RLM Embedded Reference Manual Page 30 of 157

5. Package your software for shipment

With RLM Embedded, you specify nearly all licensing options in the actual license that you ship
to your customers. However, there are a few issues that you need to consider before you ship your
application:

 Review the RLM Embedded API calls you make in your application to be sure that you use
product names that are suitable (we strongly recommend using the name of the product that is
in general use), and that the version numbers are correct. If you intend for your customers to
be able to use old licenses from your product, be sure that the version number in the
rlm_checkout() call is appropriate.
 If we have provided you with special debug libraries, make sure you use the non-debug
libraries from the standard kit for your release.
 Ensure that you have included the RLM Embedded License Administration Tools (rlmutil,
rlmhostid, rlmreread, rlmswitch, etc) in your distribution kit.
 If you use the optional rlmID1 hardware keys with your product, make sure you ship the
Aladdin utilities with your distribution kit. See Appendix F – Optional Hostid Installation
Instructions on page 151 for more details.
 Review the Best Practices for RLM Embedded Integration section and ensure that your
product and installation are well-behaved.

6. Create licenses for your customers

When you ship your product to your customers, it will require a license to run. Generally, you
want to grant different license rights to each customer. In order to do that, you create a unique
license file for each customer.

Format of the license file
The license file consists of lines of readable text which describe the license server node, some
parameters of the license server binaries, and the actual license grants to your customers. For a
complete description of the license file format, see The License File on page 39.

Types of Licenses
While there is a single format for the license file, the licenses you create can have many different
meanings. For more details, see Creating Licenses on page 48.

License creation tool
RLM Embedded is shipped with a license creation tool called rlmsign which can be integrated into
your fulfillment process. This tool reads a template license file and computes the license key for
each license contained in the file. This license key authorizes the license and prevents tampering
with the other license parameters. For more information on rlmsign, see Creating Licenses on
page 48.

License creation API

In some cases, it is more convenient to build the license in-memory and sign that license directly

RLM Embedded Reference Manual Page 31 of 157

before it is written to a file. In general, it is better to create the licenses in a file and use rlmsign to
sign the licenses, however an API call, rlm_sign_license(), is available for cases where this is not
practical. For details on the usage of rlm_sign_license(), see Appendix A - RLM Embedded API on
page 78.

License creation GUI

In addition to rlmsign and rlm_sign_license(), RLM Embedded provides a GUI for license
generation, rlmgen. The rlmgen program is described in Creating Licenses – rlmgen on page 51.

Internet Activation

RLM Activation Pro allows the ISV to give a customer an activation key which then allows the
customer to retrieve their license from the ISV website at a later time. The activation key is a short
string (resembling a credit-card number) which can be generated in advance. Once the customer
knows the system where they wish to use the software, the RLM activation software creates the
license and transmits it to the user, creating the license file for them. Details of RLM activation are
in the RLM Activation Pro manual. RLM Activation Pro is an optional product.

Reserved Product Names
In general, your product names need only be unique to your company. However, any product name
beginning with the 4 characters "rlm_" is reserved. Currently, there is one Reprise Product Name
in use that applies to RLM Embedded, however do not use any license name starting with “rlm_”:

 rlm_demo - This product name is used by RLM to enable Detached DemoTM licenses for
your products.

Note also that license replace processing uses the single-character product name '*' to indicate
all licenses, so you should avoid a product name of “*”.

The first 5 steps are done once or perhaps once per release of your software. The final step is done
each time you sell your software to a customer. You might also want to take a look at the RLM
Example Client Program, in appendix C.

Using RLM with the Visual Studio GUI

If you use the Visual Studio GUI interface on Windows, the procedure to configure the RLM
libraries is as follows:

 In a command window, build the RLM SDK as specified in Installing RLM. You need do this
only once per release of RLM.

 In your project settings / properties in Visual Studio:

 Under C/C++, add <RLM SDK path>\src to the Additional Include Directories
(where <RLM SDK Path> is the path to the installed RLM SDK)

 Under the Link/Input/Additional Dependencies or Additional Library Path,

RLM Embedded Reference Manual Page 32 of 157

javascript:;

add <RLM SDK path>\<platform>\rlmclient.lib (where <platform> is
x86_w3, x86_w4, x64_w3, or x64_w4.

 Under the Link Command Line or Project Options section, make sure the following
libraries are included:

 ws2_32.lib
 Advapi32.lib
 Gdi32.lib
 User32.lib
 winhttp.lib
 netapi32.lib
 kernel32.lib
 oldnames.lib
 shell32.lib
 wbemuuid.lib
 commsupp.lib
 ole32.lib
 oleaut32.lib
 libcmt.lib
In addition, include these libraries if you're using VC++ 2015 or later:
 libvcruntime.lib
 libucrt.lib

Then you will be able to use RLM in your project without leaving the GUI.

Using optional RLMID hostids

RLM supports a number of optional hostid choices. These are generally called rlmidN, e.g. rlmid1.
Each of these optional hostids has individual requirements when you build your software and
when you ship it.

RLM Embedded currently supports one optional hostid choice:

 rlmid1 - a hardware key manufactured by Aladdin Knowledge Systems (now SafeNet, Inc.)
Each optional hostid has specific requirements both when you build your product and when you
ship it. In addition, each optional hostid is available only on certain platforms.

In your application, you need to enable the various rlmid hostids should you chose to use the
particular hostid for nodelocked licenses. You do this in rlm_isv_config.c

Platform Support

The following table lists the first RLM version in which support is available for the particular rlmid device.
Only the listed platforms are supported.

platform rlmid1

x86_l2 v11.1

x64_l1 v11.1

RLM Embedded Reference Manual Page 33 of 157

x86_w1 v5

x86_w2 v5

x86_w3 v9

x64_w2 v5

x64_w3 v9

Startup Delay

Adding support for rlmid devices will cause your application to experience a short delay at startup
time. We tested the following scenarios, using a loop of 2000 iterations which does rlm_init(),
rlm_checkout(), rlm_checkin(), and rlm_close() of an uncounted license, on a 3GHz AMD desktop
system:

Scenario Total time loops/second seconds/loop

no rlmid support, license locked to ANY 30 seconds 66.67 0.015

 rlmid1+ rlmid2 support, license locked to ANY 37 seconds 55.55 0.018

 rlmid1+ rlmid2 support, license locked to rlmid1 40 seconds 50 0.02

rlmid1

The rlmid1 devices are manufactured by Gemalto (formerly SafeNet (formerly Aladdin
Knowledge Systems)). They are a small purple USB hardware key containing an internal serial
number. The hostid is printed on the outside of the key as "rlmid1=xxxxxxxx" where xxxxxxxx is
the serial number (hostid) of the key.

Enabling rlmid1 devices in your application

Windows kits contain everything required to use the optional rlmid hostids, Client-side support is
not included by default, and you must follow these instructions to add support for using rlmid1
devices in your application.

Proceed as follows:

In order to enable rlmid1 devices for nodelocking in your application, locate the following 3 lines
in rlm_isv_config.c:

#if 0
#define INCLUDE_RLMID1
#endif

and change the first line from "#if 0" to "#if 1". Re-build your rlm client library (by typing "make"
on Unix, or "nmake" on Windows).

When you re-link your application, you will need to include the library rlmid1.lib (on Windows)

RLM Embedded Reference Manual Page 34 of 157

or rlmid1.a (on Linux) from the RLM binary directory.

At this point, your application is enabled to use rlmid1 devices. You will notice that your
application grows by approx 900kb on Windows, and there will be a short delay the first time you
request a license, when RLM Embedded attempts to determine the ID of any rlmid1 devices
connected to the local system.

For information on shipping your product with rlmid1 devices, see Appendix F – Optional Hostid
Installation Instructions on page 151.

Advanced API Functions

There are some options you can set within your application. Generally, the defaults will work, but
if you want more control, you can look at Appendix A for a description of all the available RLM
Embedded API functions.

Clock Tampering Detection

RLM Embedded will attempt to check for system clocks that have been set back when it checks
out a license that expires. This check will happen in the license server for floating licenses or in
the client for node-locked licenses. This check is automatic; you do not need to modify your
application in any way to effect this check.

RLM Embedded hostids

RLM Embedded supports several different kinds of identification for various computing
environments, as well as some generic identification which are platform-independent.

RLM Embedded's host identification (hostid) types are:

hostid
type

meaning example Notes

ANY runs anywhere hostid=ANY

DEMO runs anywhere for a demo license hostid=DEMO

32
32-bit hostid, native on Unix, non

X86 based platforms
hostid=10ac0307

Volume serial number
on windows, not
recommended

disksn
(See note
below)

Hard disk hardware serial number
hostid=disksn=WD-

WX60AC946860

Windows only

ip (or
internet)

TCP/IP address hostid=ip=192.156.1.* always printed as "ip="

ether Ethernet MAC address hostid=ether=00801935f2b5
always printed without

leading "ether="

user User name hostid=USER=joe

host Host name hostid=host=melody

RLM Embedded Reference Manual Page 35 of 157

To determine the hostid of a machine, use the hostid type from the table above as input to the
rlmhostid command:

rlmutil rlmhostid hostid type

For example:

rlmutil rlmhostid 32
or
rlmutil rlmhostid internet

A Note about Windows disksn hostids

Some disk serial numbers on Windows are only accessible to a process running with admin
privileges. To disable use of disk serial numbers that only admins can use, see the call to
rlm_isv_cfg_set_use_admin_disksns() in rlm_isv_config.c.

Table of Contents

RLM Embedded Reference Manual Page 36 of 157

Best Practices for RLM Embedded Integration

Our experience supporting thousands of FLEXlm ISVs and license administrators has taught us
that certain design decisions can cause long-term support problems. While we have made every
effort to remove options from RLM which cause license administrator confusion with little
corresponding benefit, there are still things that you can do to make things easier for your
customer's installation and support.

In this section, we attempt to provide a framework for how well-behaved applications use RLM
Embedded. Adherence to these guidelines, while not strictly mandatory, will be greatly
appreciated by your license administrators who will see more consistent implementations from
ISV to ISV. This will also translate into support savings for you, as applications from different
ISVs will behave in a more consistent fashion.

Product names

The name you use to check out a license for a product should be as close to the name of the
product you sell as possible. Fewer checkouts per product are generally better from an license
administrator support and understanding standpoint. In the early days of license management,
companies literally "went crazy" adding checkout calls to smaller and smaller pieces of their
application, which resulted in several licenses required to run one product. Resist the temptation to
do this. If your product is a schematic editor, you probably don't need checkout calls to license the
code that reads and writes the data files. You might, but probably not.

Reprise Software considers it best practice to:

• Use the name from your price list in the rlm_checkout() call, or a name as close to this as
possible.

• Use as few rlm_checkout() calls as possible to accomplish your licensing strategy. Why? See Use
Few Checkout Call, below

• AVOID THE USE of license text fields (such as customer, contract, etc) to control how your
application behaves, other than presenting this data to the user.

• DO NOT USE the rlm_license_xxxx() calls (other than rlm_license_akey(), rlm_license_count()
and rlm_license_stat()) to do anything beyond displaying information to your user.

Installation of your product and finding the licenses for it to operate

When you integrate RLM Embedded into your product there are issues concerning delivery of
your product and the licenses for it to operate. As you already know from the chapters on
Integrating RLM Embedded Into Your Product, and The License File, there are a few ways that
your application and license server can locate the licenses they need to operate:

◦ licenses present in your product's binary directory, and
◦ options you provide to your user to specify a license location, and
◦ RLM_LICENSE (or <ISV>_LICENSE) environment variable

Reprise Software considers it best practice to:

◦ AVOID using RLM_LICENSE or <ISV>_LICENSE as part of your installation scripts or
adding definitions of these variables to your user's environment. If you want to set a default
license file, you should do this by locating the license file (or a link to the license file) in the

RLM Embedded Reference Manual Page 37 of 157

directory with your binaries, or by using the optional license location in the first parameter to
rlm_init().

◦ ALWAYS leave RLM_LICENSE and <ISV>_LICENSE environment variables unset - so
the license administrator can override any defaults you have specified.

◦ ALWAYS provide the path to your binary as the second parameter to rlm_init(). In this
way, your license administrators will know that they can put the license file (or a link) in this
directory and it will be the "last resort" license file to be used.

◦ Include a folder for licenses in your installed product folder tree.

Use Few Checkout Calls

The recommendation to use as few checkout calls as possible is made in response to our
experience in talking with many license administrators. In general, the more fragmented into
separate license domains an application becomes, the less license administrators understand the
licensing behavior and the less satisfied they are. In an ideal world (from the license
administrator's point of view), an application would need to check out 1 license in order to run,and
the name of that license would be the name of the application.

In practice, it's often quite reasonable for ISVs to use multiple license names in an application -
just keep it within reason. A good rule of thumb is to use distinct licenses for things you charge
extra money for. It seems obvious, but many ISVs have gone far, far beyond that - to the
dissatisfaction of their customers.

Table of Contents

RLM Embedded Reference Manual Page 38 of 157

The License File

The license file contains information which describes all the licenses granted from the ISV to your
customer. RLM Embedded has only one basic license type: node-locked, uncounted. The
various attributes modify this basic license type.

License Files have 3 types of lines:

1. LICENSE Lines which describe license grants from the ISV to your customer (FEATURE is
an alias for LICENSE)

2. UPGRADE lines which upgrade the version number of some or all LICENSEs, and
3. Comment lines

Applications and License Administration Tools locate the license file using The License
Environment.

Comments in license files

Lines beginning with '#' are treated as comments and not interpreted by RLM. Comments may be
added to a license file without invalidating the signatures of licenses, but should not be added
between the lines of a multiple-line license. Here is an example:

#
Licenses served by host gt2
#
HOST gt2 0000a74f88ce 5053
ISV reprise
#
Original license for v3.0 (10 seats)
#
LICENSE reprise joe 3.0 permanent 10 _ck=f81efcf79a
sig="60PG451KTXVQ0WYBX785XAKTDKUCHB7T683Y2MG22M088S8UAFR0VKPMFGPKH
 4XW4H5QQ8JSFFJG"
#
v4.0 license (5 additional seats)
#
LICENSE reprise joe 4.0 permanent 5 _ck=3b1efcd48c
sig="60P045145JSKEJSR48V3GXCX29S8TM5TKE91TS022HW0XAEEWH82DRTCJB830AW
 EV62MUE2N7C"

Note that prior to RLM Embedded v9.3, the comment character was not strictly required on
comment lines. With improved error checking in 9.3 however, the comment character is required.

Special License Names

Any product name beginning with "rlm_" is reserved to Reprise Software.

Legal characters in the license file

In general, all license file fields are white-space delimited, meaning that no data item can contain
embedded spaces, tabs, newlines or carriage returns. In addition, the following six characters are
illegal in data items in the license (and options) file: "<", ">", "&", single quote ('), back-quote (`)
and double-quote ("). ISV license names cannot begin with the characters "rlm_".

RLM Embedded Reference Manual Page 39 of 157

Note that all lines in license files must be shorter than 1024 characters. Anything over 1024
characters will be truncated.

Everything in the license file is case-insensitive, with the exception of short (~62-character)
license keys (keys with bits/character of 6 - see Creating Licenses).

Note: any time RLM Embedded processes a username, it will replace any white space in the name
with the underscore '_' character. This is true for usernames used as hostids. Also note that
usernames are case-insensitive.

Order of lines in the license file

In general, the order of lines in the license file does not matter, with the following exception:

◦ LICENSE/FEATURE lines are processed in the order they appear in the license file. This
means that you can bias the selection of licenses by the order they appear in the license file.
For example, if you have licenses for product ABC versions 1.0 and 2.0, and your software
requests version 1.0, the license you receive will depend on the order: if the 2.0 license
appears first in the license file, and it is available, your application will receive a v2.0 license.
If the v1.0 license appears first and it is available, you will receive a v1.0 license.

LICENSE Line

Format:

LICENSE isv product version exp-date count [sig=]license-key [optional parameters]

The LICENSE line defines the usage rights to a product. All fields in the license line are case-
insensitive (with the exception of short, ie, less than 62-character, license keys), and none may be
modified by the license administrator, with the exception of the parameters whose names begin
with the underscore (“_”) character.

Note: Prior to RLM v9.3, the license file parser did not reject optional keywords which
were unknown – rather, it silently ignored them. Beginning in RLM v9.3, the parser
will reject unknown keywords, so that more errors can be detected at license generation
time rather than later. This means that some license templates which worked correctly
pre v9.3 will no longer work. A couple of examples of this are:

 LICENSE isv product v1.0 1-jan-2014 uncounted hostid=any key

(in this case, “key” is interpreted as an optional parameter and it is rejected. To fix this,
change “key” to “sig”).

Another example is a license in a string passed to rlm_init(). This license previously
worked:

 <valid license, without terminating '>' : <second license>

This will no longer work, as the parser interprets the ':' path separator character as an
options field, which it rejects. To fix this, insert the trailing '>' character after the first
license.

RLM Embedded Reference Manual Page 40 of 157

Fixed (positional) parameters

The first 6 parameters are required on every license, and are present in the order shown above.

◦ isv is the name of the ISV granting the rights.

◦ product is the name of the product for which license rights are being granted.

◦ version is the highest-numbered product version supported by this license, in the form "N.M".
For example, 1.0, 2.37, or 2006.12 Each RLM Embedded license has a version number, of
the form "major.minor". The version in the rlm_checkout() call must be less than or equal to
the version in the license for the checkout to succeed. (Note: This comparison is done in the
"normal" way, ie, 1.2 is greater than 1.10).

The version can be used in a number of ways:

You could make all your software ask for version 1.0 with all your licenses issued for version
1.0, and the version would never be an issue, unless and until you wanted to obsolete all the
old licenses on a new release.

You could put your product's version number in the rlm_checkout() call, then licenses for an
older version of your product will not work with a newer version of the product.

You can use a date-based version. To do this, you might put the year and month of release
into the rlm_checkout() call in your application, then when you issue licenses, issue them
either for this year and month when your customer's maintenance period ends.

This allows your customer to use products released on or before the date in the license.
Bear in mind that you would need to use the leading 0 in the month, since 2006.2 is
greater than 2006.11, which might not be what you intend.

◦ exp-date is the date the license expires, in the form dd-mmm-yyyy, for example, 1-jul-2007.
All licenses have a expiration date. If you prefer for your licenses to not expire, you can use
the special expiration date of permanent, which never expires (any date with a year of 0 is
also non-expiring, e.g. 1-jan-0).

Note: As of v9.4, RLM Embedded uses two checks to determine if the system clock has been
set back. The first is a proprietary algorithm which does not access any other computers, and
has been used in RLM since version 1.0. It is fast but sometimes returns false positives. If this
check indicates clock windback, the second check is invoked. The second check involves
connecting to a random NIST (National Institute of Standards and Technology) time server. If
the second check succeeds, that is, the system time is not behind the time server time, RLM
Embedded doesn't generate a clock windback error.

◦ count is the number of licenses granted. The count field defines the license type. See the
License Models chapter on page 9 for a discussion of license types and modifiers. The
license type is one of:

▪ 0 or “uncounted” indicates an uncounted license.

▪ “single” means a node-locked, single-use license. single is a special case of a counted
license, but it is different from “1”. A license with a count of 1 is a regular counted
license, and requires a license server. A license with the keyword “single” is a single-use,
nodelocked license. This license does not require a license server, and in fact license
servers will not process this license. single licenses are a convenient way to issue single-
use licenses without the license administrator having to configure a license server.

◦ license-key is a digital signature of all the license data, along with the hostid on the HOST
line, if present. If a license has a non-zero count, it always requires a HOST line. An
uncounted license does not require a HOST line, and even if there is a HOST line, the hostid

RLM Embedded Reference Manual Page 41 of 157

of the license server is not used in computation of its license-key. The license-key will have
"sig=" prepended after the license has been signed by the rlmsign utility.

Note that if the license-key is preceded by sig=, it can be present after any or all of the optional
parameters.

In addition to the standard license attributes above, licenses can have the following optional license
modifier attributes:

 Locking: Node-locked (uncounted or single)

RLM Embedded can lock a license in a variety of ways:

 A license can be node-locked. A node-locked license can only be used on a single node, as
specified by the hostid of the license. For a description of the available hostids in RLM
Embedded, see RLM Embedded hostids in the Integrating RLM Embedded into your Product
chapter. The hostid in a license can be a hostid list, which means that the license is usable on any
of the specified hostids.

 A node-locked license can be either uncounted, or “single”. If it is uncounted or single, then
the software only need verify that it is executing on the correct computer.

 To create a node-locked license, add the keyword hostid=.. at the end of the license line. See
the description of the LICENSE Line for more information.

 A license can be locked to a user. This is a special case of a node-locked license, and is
accomplished using the hostid user=.... Note that any white space in a username is converted to
the underscore ('_') character. Also note that usernames are case-insensitive.

 hostid=hostid-string (used for license locking)

The optional hostid at the end of the line specifies that the licenses can only be used on the
specified host. Uncounted licenses always require a hostid. Counted licenses generally do not have
a hostid, but it could be present, in which case we would call this license a "node-locked, counted"
license. (For a description of the various hostids that RLM Embedded supports, see Appendix E –
RLM Hostids, on page 148.

The hostid on a LICENSE line can be a hostid list. The hostid list is a space-separated list of valid
hostids, enclosed in double-quotes. The license can be used on any of the hostids in the list. The
list can contain at most 25 hostids, and can be no longer than 200 characters.

For example, this hostid list would allow the license to be used in any of the 4 specified
environments:

hostid="ip=172.16.7.200 12345678 rlmid1=83561095 user=joe"

 Activation Key used to create this license

akey=activation-key

RLM Embedded Reference Manual Page 42 of 157

When requested in RLM Activation Pro, the license generator will include the akey= keyword
with the activation key used to fulfill the license. akey= first appeared in RLM v11.0.

 Disable Computing Environment

disable="computing-environment-list"

disable= specifies that clients running in the appropriate computing environment cannot use this
license.

computing-environment-list is a list of different computing environment descriptions; if the
application is running in any of these environments, the license will not be usable.

computing-environment-list is a space-separated list of the following environments (Note: put the
list in quotes if more than one item is specified):

■ TerminalServer - disable use on Windows Terminal Server and Remote Desktop.
■TerminalServerAllowRD – disable use on Windows Terminal Server but allow use
via Remote Desktop
■ VM - disable use on Virtual Machines.

Disabling TerminalServer is most useful for node-locked, uncounted licenses, if you do not want
to allow multiple network users running remote sessions to make use of a single license. Note that
you can't disable both TerminalServer and TerminalServerAllowRD – they are mutually
exclusive.

Disabling Virtual Machines is useful for node-locked, uncounted licenses in order to prevent these
licenses from being used on multiple virtual machines with the same hostid.

Example:
disable=TerminalServer

 License ID

Any License Administrator can add _id=nnn to a license. “nnn” is a positive integer, less than
2**31, which is used to identify the license. If no _id= keyword is present, the id of the license is
0. The id of a license can affect license pooling as follows:

A license that doesn't specify an id (or specifies 0), will pool with any other license that it
would normally pool with. However, a non-zero id will only pool with the same same
ID# (assuming all the other attributes make it eligible to pool).

Other than license pooling, the id can be used to select which licenses to apply an option (such as
RESERVE). The id is not used in the computation of the license signature, and as such can be
added or changed by the License Administrator.

 License Issue Date

If issued=dd-mmm-yyyy is specified in the license, this license issue date will be used in the
computation of license replacement. If no issue date is present, the license start date is used. If
neither is present, then this license will be replaced by any license specifying a replace= keyword
with this license's product name.

 License Options

RLM Embedded Reference Manual Page 43 of 157

options = options_list

The options specification is used to encode options for the product license. The options field is a
string (up to 64 characters in length) which is completely defined by the ISV. The options are used
to calculate the license signature, but otherwise are unused by RLM. You can retrieve the options
from a license with either the rlm_product_options() or the rlm_license_options() call. Note that if
the string contains embedded white space, it must be enclosed within double quotes.

 Platform Restrictions

platforms=platform_list

RLM allows you to specify one or more platforms on which the application must be running. If a
platforms=platform-list specification is contained in the license, the computer on which the
application is running must be one of the specified platforms.

To specify one or more platforms, create a list of platform names. The platform-list consists of a
list of RLM-defined platform names, which consist of a machine architecture and an operating
system version/revision. Specify platforms= as a space-separated list of platform names with the
trailing OS revision removed, as shown in the following table. Note that if you specify more than
one platform, enclose the entire string in double quotes, e.g.,
platforms="sun_s x86_w sun64_s". Also note that while you can include the trailing revision
number, it will not be used by RLM in any comparisons, so including it may lead to confusion.

Platform RLM Platform name string to use in
platforms=

HP-UX on PA-Risc hp_h1 hp_h

HP-UX 64-bit on PA-Risc hp64_h1 hp64_h

IBM AIX 32-bit ibm_a1 ibm_a

IBM AIX 64-bit ibm64_a1 ibm64_a

Linux on Intel X64 x86_l1, x86_l2 x86_l

Linux 64-bit on Intel x64_l1 x64_l

MAC on Intel X86 x86_m1 x86_m

MAAC on Intel (64-bit) x64_m1 x64_m

MAC on PPC ppc_m1 ppc_m

Solaris 32-bit on Intel x86_s1 x86_s

Solaris on Sparc sun_s1 sun_s

Solaris 64-bit on Sparc sun64_s1 sun64_s

Windows on Intel x86 x86_w3, x86_w4 x86_w

Windows 64-bit on Intel x64_w4, x64_w4 x64_w

 Replacement Licenses

RLM Embedded Reference Manual Page 44 of 157

replace[=product_list]

In order to render ineffective one or more licenses which you have already issued, use the
replace[=product-list] option in the new license. replace= causes RLM to ignore the "replaced"
license(s). Beginning in RLM v11.0, if product_list is the single character '*', all licenses will be
replaced.

Note: If you specify replace, you must also specify either start= or issued=.

replace operates as follows:

 licenses from the product_list will be replaced (all licenses if product_list is '*'). If
product-list is not specified, then the product name of the license containing the replace
keyword will be the only product to be replaced.
 if the license with the replace keyword specifies an issued= date, then this is the
"replacement date".
 if the license with the replace keyword does not have an issued date, then the
"replacement date" is the start date of the license.
 if the license contains neither an issued date nor a start date, no licenses will be
replaced.
 Any license in the list of products with an issued date prior to the replacement date will
be replaced.
 Any license in the list of products which does not have an issued date, but which has a
start date prior to the replacement date will be replaced.
 Finally, any license in the list of products with neither an issued nor a start date will be
replaced.
EXAMPLE: To replace products “a” and “b”, use: replace=”a b” in the license.

 Effective Start Date.
If start=dd-mmm-yyyy is specified in the license, the license cannot be used before the specified
date.

 Timezone Restrictions

timezone=timezone-spec

RLM allows you to specify one or more timezones in which the applications must be running. If a
timezones=timezone-spec specification is contained in the license, the computer on which the
application is running must be set to one of the specified timezones.

To specify one or more timezones, create a bitmask of the desired timezones, expressed as hours
west of GMT:

Bit 0 - GMT
Bit 1 - 1 hour west of GMT
Bit 2 - 2 hours west of GMT
...
Bit 23 - 23 hours west of GMT (or 1 hour east of GMT)

This bitmask should be represented as a hex number. So, for example, to allow your application to
run in the GMT timezone only:

timezone=1

To allow your application to run in timezone 8 (PST):

RLM Embedded Reference Manual Page 45 of 157

timezone=100

To allow your application to run in timezones 5-8 (continental USA):
timezone=1E0

The following fields are not used by RLM, but are present to identify licenses , or can be used in
your application to present to the user:

 contract=contract-info
contract= is meant to hold the customer's purchase order or software agreement number.
This can be used to display to the user to validate a support contract, etc. It is not used by
RLM. Maximum of 64 characters.

 customer=who
customer is to identify the customer of the software. This can be an added incentive to
keep honest users honest, as it is unlikely that Mega South-East Airlines would want to
use a license that was issued to Main St. Bank., for example. customer is not used by
RLM. Maximum of 64 characters.

 issuer=who
issuer= is used to identify the organization which issued the license. It is not used by
RLM. Maximum of 64 characters.

 _line_item="descriptive_text"
The _line_item field is used to map a particular product to the item purchased. This field
will be logged into the report log at the start when all products supported are logged, so
that a report writer can generate reports based on purchased products, as opposed to
product names used for licensing purposes. If the descriptive text contains spaces, it
should be enclosed in double-quote (") characters. The contents of the _line_item field
can be modified (or the field can be added) without invalidating the license signature.
Maximum of 64 characters.

 type=type-spec
type= is used to identify the type of license. type-spec is a string containing one or more
of the values:

 "beta"
 "demo"
 "eval"
(For example, type="beta eval" or type="eval". The contents of the license type
field are retrieved by the rlm_license_type() call (see rlm_license_XXXX()). type is
not used by RLM.)

RLM Embedded Reference Manual Page 46 of 157

The maximum length and types of license fields are as follows:

Field Type max data length (excluding
keyword=) or value range

isv string 10 characters

product string 40 characters

version string, in the form nnn.mmm 10 characters

exp-date string of the form dd-mmm-yyyy 11 characters

count positive integer 2**31 - 1

hostid (single) string 75 characters

hostid (list) space-separated, quoted string 200 characters, max of 25 hostids

hostname string 64 characters

issued string of the form dd-mmm-yyyy 11 characters

_line_item string – license administrator defined 64 characters

options string 64 characters

platform string 80 characters

start string of the form dd-mmm-yyyy 11 characters

timezone int bitmap with bits 0-23 set

contract string – unused by RLM 64 characters

customer string – unused by RLM 64 characters

issuer string – unused by RLM 64 characters

type string - consisting of "demo" "eval"
and/or "beta"

14 characters

Example

LICENSE reprise write 1.0 permanent uncounted hostid=IP=172.16.7.3 sig=xxxxx

In the example, the write product is licensed to a host with an IP address of 172.16.7.3. This is a
non-expiring, node-locked, uncounted license.

Note: The keyword "FEATURE" can be used in place of "LICENSE".

Table of Contents

RLM Embedded Reference Manual Page 47 of 157

Creating Licenses

When you ship your product to your customers, it will require a license to run. Generally, you
want to grant different license rights to each customer. In order to do that, you create a unique
license file for each customer.

Format of the license file

The license file consists of lines of readable text which describes the actual license grants to your
customers. For a complete description of the license file format, see The License File chapter on
page 39.

License creation tools

There are 4 ways to create licenses using RLM Embedded:

◦ rlmgen – GUI license generator

◦ rlmsign – command-line tool to sign a template license file

◦ API call – rlm_sign_license()

◦ RLM Activation Pro (an optional product)

rlmgen – GUI license generator

The rlmgen license generator can be used to create licenses interactively. rlmgen is a binary
which contains an embedded web server – the UI is presented in your browser. For details on
using rlmgen, see the next chapter - Creating Licenses – rlmgen on page 51.

rlmsign

RLM is shipped with a license creation tool called rlmsign which can be integrated into your
fulfillment process. This tool reads a template license file and computes the license key for each
license contained in the file. This license key authorizes the license and prevents tampering with
the license parameters.

If you have a back-office sales tracking system, rlmsign is the easiest way to integrate license
fulfillment. Create an unsigned license file for the sales order, then run rlmsign with this license
file as it's first parameter. rlmsign will sign the license file and make it ready to ship to your
customer.

rlmsign reads license_file, computes the license keys for all the included licenses that specify your
ISV name, and re-writes the file with the updated license keys.

Using rlmsign on Unix

RLM Embedded Reference Manual Page 48 of 157

 % rlmsign license_file [bits-per-character] [-bits bits-per-character] [-maxlen len]

Using rlmsign on Windows

 c> rlmsign license_file [bits-per-character] [-bits bits-per-character] [-maxlen len]

rlmsign reads license_file, computes the license keys for all the included licenses that specify your
ISV name, and re-writes the file with the updated license keys.

The optional parameter bits-per-character is one of 4, 5, or 6, and specifies the character encoding
of the resulting license key. If not specified, bits-per-character defaults to 5.

◦ bits-per-character of 4 results in license keys consisting of hexadecimal numbers only. The
resulting key is approximately 92 characters in length.

◦ bits-per-character of 5 (the default) results in license keys consisting of uppercase letters and
numbers only. The resulting key is approximately 74 characters in length.

◦ bits-per-character of 6 results in license keys consisting of upper and lowercase letters,
numbers, and the 4 special characters ('*', '=', '+', and '~'). The resulting key is approximately
62 characters in length.

You can specify bits-per-character positionally as the 2nd argument, or you can use the -bits bits-
per-character argument any place after the license_file parameter.

The optional -maxlen len parameter tells rlmsign to set the maximum length of LICENSE lines to
the length specified. If this parameter is not specified, the default value of 70 is used. Any field
on a license line which would cause the line to go over the maximum length will be placed on a
continuation line. If a field can be split across lines (e.g. for fields that are quoted strings), then
the field will be split when the maximum length is reached. The maximum length must be
between 20 and RLM_MAX_LINE (1024) characters.

License creation API - rlm_sign_license()

In some cases, it is more convenient to build the license in-memory and sign that license directly
before it is written to a file. In general, it is better to create the licenses in a file and use rlmsign to
sign the licenses, however an API call is available for cases where this is not practical.

RLM Embedded also supplies the rlm_sign_license() API call to sign a license line in-memory.
For details on the rlm_sign_license() API call, see Appendix A.

RLM Activation Pro

RLM Activation Pro allows the ISV to give a customer an activation key which then allows the
customer to retrieve their license from the ISV website at a later time. The activation key is a short
string (resembling a credit-card number) which can be generated in advance. Once the customer
knows the system where they wish to use the software, the RLM activation software creates the
license and transmits it to the user, creating the license file for them. RLM Activation Pro is an
optional product, and details of RLM Activation Pro are in the RLM Activation Pro manual.

RLM Activation Pro is intended to support most common activation scenarios, but in the event
that your needs are more complex, or you need help integrating RLM activation with CRM
systems, Reprise Software recommends a relationship with one of our Partners. See our website

RLM Embedded Reference Manual Page 49 of 157

Partner Page for more information on our Fulfillment Partners.

Reserved Product Names

In general, your product names need only be unique to your company. However, any product
name beginning with the 4 characters "rlm_" is reserved. Currently, there is one Reprise Product
Names in use for RLM Embedded: rlm_demo - This product name is used by RLM to enable
Detached Demotm licenses for your products.

Table of Contents

RLM Embedded Reference Manual Page 50 of 157

http://www.reprisesoftware.com/partners.htm

Creating Licenses – rlmgen

rlmgen is a GUI tool for use by ISVs to create one-off licenses based on stored product
definitions.

rlmgen is a web-based application which allows you to create and edit product definitions for
fulfillment, then create individual licenses for in-house or customer use.

rlmgen uses RLM licensing to control access to the two main functions:

◦ editing the product definition database (rlm_act_admin license)
◦ creating product licenses (rlm_gen_license license)

The use of these licenses will be described later in this section.

Running rlmgen

Usage: rlmgen [optional port#]

Run rlmgen from the command line. rlmgen uses a web interface which runs on port 6600 by
default. If you specify the optional port#, rlmgen will use this port number in place of 6600.

Once rlmgen is running, point your web browser to "hostname:6600"
(http://hostname:6600/home.asp) where hostname is the name of the machine where you run
rlmgen (or "hostname:alternate port#" if you specified an alternate port#).

rlmgen creates data files for product definitions in the same directory as the binary. It also expects
these data files to be in the same directory when it attempts to read them.

rlmgen Licensing and Access Control

rlmgen uses 2 licenses to control access to back-office license operations:

◦ rlm_act_admin license - this license enables the creation and editing of product definitions.
◦ rlm_gen_license license - this license enables the creation of individual licenses using the

"Create License" button.

When you install the RLM kit, nodelocked-uncounted licenses (locked to hostid ANY) are created
for both of these licenses so that you can get started. If you do not care about access control to
rlmgen, you need do nothing further. On the other hand, if you do care about access control to
these functions, you should edit the licenses created during the install procedure to limit access to
rlmgen. In any case, you should make sure that the license file is present in the same binary as
the rlmgen binary if you move rlmgen to a different directory.

Since rlmgen is a web-based application, you will need to issue licenses for rlm_act_admin and
rlm_gen_license for the IP addresses of the machines you would like to be able to perform these
activities. Edit these licenses for your particular network.

RLM Embedded Reference Manual Page 51 of 157

http://hostname:6600/home.asp

Using rlmgen

There are 2 main activities you will perform with rlmgen:

◦ initial setup of your product definitions
◦ generating individual licenses

When you run rlmgen, the application will start a web server on port 6600 (or an alternate port if
you specify on the rlmgen command line). Next, point your browser at port 6600 on the machine
where you ran rlmgen.

Your browser will display a page that has a title area at the top, along with a column of command
buttons along the left, and a main display area on the bottom right hand side. The startup screen is
shown below:

The command buttons are arranged in 3 groups, top to bottom:

◦ setup commands - "Create Product Definition" and "Setup License Generator"
◦ license generation commands - "Create License", and
◦ Database viewing/updating commands - "View Product Definitions", "View System Info",

and "About rlmgen..."

Each of these commands will be described in the sections which follow.

Setup Commands

The 2 setup commands are:

◦ Create Product Definition

RLM Embedded Reference Manual Page 52 of 157

◦ Setup License Generation

These commands are used to set up the database for license generation. Everything in rlmgen is
driven from product definitions, so you should create at least one product definition first. Product
definition allows you to specify a name for the "product" which is then associated with a license
product name, version, and several other license parameters.

The Setup License Generation form allows you to specify which optional RLM license
parameters will be presented in the GUI for specification. Any parameters checked on this form
will appear in the license creation screens. If you specify some of these parameters as part of the
product definition (in the "other license parameters" field), they will not appear in the list of
checkboxes in Setup License Generation (since they are already specified for the product). You
should leave any parameter which you do not want to put into a generated license unchecked in
this form.

License Generation Commands

There is a single license generation command Generate License, which brings up a form that
allows creation of a single license from parameters specified in the forms.
The data appearing in the license creation forms is customized by both the product definition as
well as the Setup License Generation form.

Database Viewing/Updating Commands

These commands are:

◦ View Product Definitions
◦ View System Info, and
◦ About rlmgen..

These commands all allow viewing of the product definition database. The first command also
will allow you to edit product definitions, by pressing the "Edit" or "Disable" button at the end of
the row in the display. Product definitions which are disabled are not deleted, but will appear in
gray in the list, and can be re-enabled later.

View System Info displays information about the system where rlmgen is running, including the
RLM platform, RLM version, and hostids for this system.

Finally About rlmgen... displays information about the rlmgen program itself.

Table of Contents

RLM Embedded Reference Manual Page 53 of 157

End User Installation

When your customer receives your product, they need to do a few things in order to set up the
licensing. If they are familiar with popular license managers, these installation steps should be
quite familiar.

The steps the license administrator needs to perform to install licensing, in addition to installing
your application, are:

◦ Install license file
◦ Optionally set up environment for users to find the license file when running your application.

In addition, your users would also want to know:

◦ Where to find the license administration tools
◦ You might also want to provide them with the RLM License Administration manual (or a link

to the manual on the Reprise Website). If you provide a link to the Reprise website, your
customers will always have the manual for the latest released version of RLM (which always
includes information about all RLM versions, including which version certain features
appeared).

Reprise Software's Recommended Software Installation steps

Installing your product with RLM Embedded should be very straightforward, and should require
no configuration of environment variables, etc.

On the machines where your application is going to run, place the license file in your product
hierarchy. For nodelocked licenses, this should be the actual, signed license file, and nothing
needs to be done to this license file.

Nothing in this set of recommendations requires the use of environment variables, and the install-
time editing of license files is kept to a minimum (No editing of license files for nodelocked
licenses, and only the server hostname needs to be set on the client side for floating licenses).

Details:

During development:

◦ establish a directory in your installed product tree for license file(s). This could be the same
directory where your product is installed.

◦ Pass the directory from the step above as the first argument to rlm_init().

When you first ship the license:

◦ Put the actual licenses into the license file. Install in the default directory. You're done.

If you ship new, additional licenses to your customer:

◦ Put the new license file in the same directory as the old one. You're done. RLM Embedded
will read all the license files in this directory.

RLM Embedded Reference Manual Page 54 of 157

Table of Contents

RLM Embedded Reference Manual Page 55 of 157

Pre-Release Checklist

With RLM Embedded, you specify nearly all licensing options in the actual license that you ship
to your customers. However, there are a few issues that you need to consider before you ship your
application:

◦ Review the RLM Embedded API calls you make in your application to be sure that you use
product names that are suitable (we strongly recommend using the name of the product that is
in general use), and that the version numbers are correct. If you intend for your customers to
be able to use old licenses from your product, be sure that the version number in the
rlm_checkout() call is appropriate.

◦ If we have provided you with special debug libraries, make sure you use the non-debug
libraries from the standard kit for your release.

◦ Ensure that you have included the RLM License Administration Tools in your distribution kit.

◦ Review the Best Practices for RLM Embedded Integration section and ensure that your
product and installation are well-behaved.

◦ If you use the RLMID1 option, add documentation on installing and using the device:

▪ Ensure that INCLUDE_RLMID1 is defined in your rlm_isv_config.c file if you plan to
create node-locked licenses locked to an rlmID1 device.

▪ Windows update will perform the required steps for internet-connected systems.
However, for your users who have licensed systems not connected to the internet, your
user will need to run the driver setup utility. Include the driver installer located at:
http://www.reprisesoftware.com/drivers/rlmid1.zip

▪ On Linux, the driver installation download is at "http://sentinelcustomer.safenet-
inc.com/sentineldownloads/". Select one of the "Sentinal HASP ... Runtime Installer"
options, where the operating system in the 3rd column is Linux. The installation is
available in RPM, and compressed tar formats. The installer starts the driver, and sets up
rc scripts so that the driver is started when the system boots.

▪ Include instructions for your license administrators to install the hardware key.

◦ A good practice is to include a folder for licenses in your installed product folder tree. Then
any license you ever issue - an expiring demo license or a production nodelocked license -
goes in one or more .lic files in that licenses folder. Given that you have passed the path to
that directory to rlm_init(), your application will always be able to find the licenses.

Table of Contents

RLM Embedded Reference Manual Page 56 of 157

http://sentinelcustomer.safenet-inc.com/sentineldownloads/
http://sentinelcustomer.safenet-inc.com/sentineldownloads/
http://www.reprisesoftware.com/drivers/rlmid1.zip

Section 3 – Advanced Topics

This section of the manual contains topics that may be of use if
you are doing a more advanced implementation of licensing.

RLM Embedded Reference Manual Page 57 of 157

Upgrading to a New Version of RLM Embedded

If you have previously integrated RLM Embedded into your product and wish to upgrade to a new
RLM Embedded version, follow these steps:

◦ First, Download the new RLM kit from the Reprise website - see details in the Installing
RLM Embedded chapter, above.

◦ Then, unpack the kit and install. See details in the Installing RLM Embedded chapter, above.
◦ Next, copy the following 3 files from your old kit:

rc/rlm_pubkey.c - copy this file - do not use a new public/private key set from the installation

src/rlm_privkey.c - copy this file - do not use a new public/private key set from the installation

src/rlm_isv_config.c - copy this file - unless you want to change the configuration of RLM
Embedded for this version

◦ Edit the following 2 files in the new kit:

src/license_to_run.h - modify this to install the new RLM Embedded license you received from
Reprise Software

platform/makefile - modify the ISV= line to contain your ISV name (always required on Windows
- this step is done as part of the INSTALL process on Unix)

◦ Finally, run make (or nmake) in the kit binary directory, and your RLM Embedded libraries
rlmsign binary and activation binaries are ready to use.

Table of Contents

RLM Embedded Reference Manual Page 58 of 157

Using RLM Embedded with Languages other than
C/C++

If the language you are implementing your application in can link to the RLM static library then
that is the recommended approach. Other languages must use the RLM dynamic library,
rlm<vvmm>.dll on Windows or rlm<vvmm>.so on Unix/Linux. <vvmm> indicates RLM version,
eg, the DLL for v11.0BL2 is rlm1102.dll.

In all cases, you will need to download the RLM SDK and build it with the correct C compiler.
On Windows, you can download Microsoft Visual Studio Express for free and use it to do the
RLM build.

The following sections explain how to use RLM Embedded with various languages.

Using RLM Embedded with Fortran

The examples/unsupported directory on the RLM SDK contains a Fortran interface for RLM.

Using RLM Embedded with MinGW

You need to use the RLM dll with MinGW, as the RLM library is compiled with Visual C++ and
those object modules can't coexist with MinGW object modules in the same executable. Link
your application with rlm<vvmm>.lib, and at runtime make sure that rlm<vvmm>.dll is in your
PATH. <vvmm> indicates RLM version, eg, the DLL for v11.0BL2 is rlm1102.dll.

Here is a makefile example, which builds the demo client rlmclient.exe with MinGW. Here
rlmclient is analogous to your application. (Note that using gcc to perform the link instead of ld
means that gcc finds all the right system libraries rather than you having to enumerate them on the
ld command line):

rlmclient.o: ..\examples\rlmclient.c
gcc -I..\src -o rlmclient.o -c ..\examples\rlmclient.c

rlmclient.exe: rlmclient.o rlm1102.lib
gcc -o rlmclient.exe rlmclient.o rlm1102.lib

Using RLM Embedded with Visual Basic (outside .NET)

For information on integrating RLM with Visual Basic 6 applications, see
h ttp://www.reprisesoftware.com/tutorials/Using_RLM_with_Visual_Basic.pdf . The following
material covers later versions of Visual Basic.

RLM Embedded Reference Manual Page 59 of 157

http://www.reprisesoftware.com/tutorials/Using_RLM_with_Visual_Basic.pdf
http://www.reprisesoftware.com/tutorials/Using_RLM_with_Visual_Basic.pdf

Visual Basic provides a means to make calls to functions in a DLL. This can be used to call RLM
functions in rlmVVVV.dll. This is done by declaring the RLM functions you need to use in Visual
Basic's "Declare Function" statements, identifying the location of the DLL and how to pass each
argument. There is a good technical article on how to do this at
http://support.microsoft.com/kb/106553/EN-US/ - see sections 2.0 and 2.1. (Note: VVVV
signifies the RLM version, such as 943 for 9.4BL3 or 1002 for 10.0BL2)

Write Declare Function statements for the RLM functions you want to call. To figure out the
mapping between basic data types and C data types, first look at src\license.h on the SDK, to see
how each function is declared in C, the use the corresponding datatype and calling convention in
Basic. Some guidelines:

◦ Where an RLM function returns some sort of handle, like RLM_HANDLE or
RLM_LICENSE, declare the function in Basic "As IntPtr"

◦ Where an RLM function returns an int, declare the function in Basic "As Integer"
◦ Where an RLM function argument is a handle type (RLM_HANDLE, RLM_LICENSE, etc),

pass it as "ByVal ... As IntPtr"
◦ Where an RLM function argument is type "char *", pass it as "ByVal ... As String"
◦ Where an RLM function argument is type "int", pass it as "ByVal ... As Integer"

Here is a simple example Visual Basic program that checks out a license and checks it back in:

Module Module1
 Declare Function rlm_init Lib "rlm.dll" (ByVal path As String, ByVal appPath As String, ByVal
license As String) As IntPtr
 Declare Function rlm_stat Lib "rlm.dll" (ByVal handle As IntPtr) As Integer
 Declare Function rlm_checkout Lib "rlm.dll" (ByVal handle As IntPtr, ByVal name As String, ByVal
version As String, ByVal count As Integer) As IntPtr
 Declare Function rlm_license_stat Lib "rlm.dll" (ByVal license As IntPtr) As Integer
 Declare Function rlm_checkin Lib "rlm.dll" (ByVal license As IntPtr) As Integer
 Declare Function rlm_close Lib "rlm.dll" (ByVal handle As IntPtr) As Integer

 Sub Main()

 Dim response As String
 Dim path$ = "."
 Dim nullstring$ = ""
 Dim handle As IntPtr
 Dim license As IntPtr
 Dim product$ = "test1"
 Dim ver$ = "1.0"
 Dim stat As Integer

 handle = rlm_init(path$, nullstring, nullstring)
 stat = rlm_stat(handle)
 If stat = 0 Then
 license = rlm_checkout(handle, product, ver, 1)
 stat = rlm_license_stat(license)
 If stat = 0 Then
 Console.WriteLine("Checkout succeeded, hit CR to check in...")
 response = Console.ReadLine
 stat = rlm_checkin(license)
 Else
 Console.WriteLine("rlm_checkout error " + stat.ToString("d"))
 End If
 stat = rlm_close(handle)
 Else
 Console.WriteLine("rlm_init error " + stat.ToString("d"))
 End If

 Console.WriteLine("Hit CR to exit...")
 response = Console.ReadLine
 End Sub

End Module

Using RLM Embedded with .NET

RLM Embedded Reference Manual Page 60 of 157

javascript:;
javascript:;
javascript:;
javascript:;
http://support.microsoft.com/kb/106553/EN-US/

Overview

RLM Embedded provides a solution for .NET developers who want to use RLM Embedded to
license their applications. It consists of a simple Interop layer that defines the RLM Embedded
functions in .NET terms, and a DLL containing the native code. Here is the high-level overview of
how to use this capability:

◦ Install, configure and build a Windows RLM SDK. This provides the utilities, and the actual
RLM Embedded code packaged in a DLL.

◦ Build the VS project "Reprise" in the dotnet folder on the SDK.
◦ Add calls to the RLM Embedded methods to the .NET application to be licensed.

Building the RLM Embedded .NET package

If you have VS2005 or later, simply double click on dotnet\Reprise\Reprise.sln to open the project
in Visual Studio, then build the project. You can build Debug or Release or both. If you have a
prior version of Visual Studio, then create a project for the RLM Embedded .NET code manually,
copy dotnet\Reprise\Reprise\RLMInterop.cs into it, and build.

Running the Example Program

The example program expects the example license file from the SDK (example.lic) to be correctly
signed and to be available. The example program will check out v1.0 of the license "test1". Here
are the steps to run the example program::

◦ Open dotnet\RLMTest\RLMTest.sln in Visual Studio 2005 or later. If you have an earlier
version of Visual Studio, create a new project for RLMTest, as described above for Reprise.

◦ Build the project, either Release or Debug or both, but in the same configuration(s) as you
built the Reprise project.

◦ Copy rlmVVVV.dll, which contains the actual RLM code, from your platform folder
(x86_w* or x64_w*) to some folder which is on your PATH, so that it can be found at
runtime by the application. (Note: VVVV signifies the RLM version, such as 943 for 9.4BL3
or 1002 for 10.0BL2)

◦ Copy example.lic, which is the signed license file, from your platform folder (x86_w* or
x64_w*) to the same folder containing the application.

◦ Run the application. It opens a command window for it's output, which will look like this if it
runs successfully:

rlm_init successful
hostid of this machine is <your machine's hostid>

test1
version 1.0
expiration permanent
test2
version 1.0
expiration permanent
test3
version 1.0
expiration permanent
rlm_license_center
version 7.0
expiration permanent
rlm_act_admin
version 7.0
expiration permanent

RLM Embedded Reference Manual Page 61 of 157

rlm_act_view
version 7.0
expiration permanent
rlm_gen_license
version 7.0
expiration permanent
rlm_roam
version 1.0
expiration permanent
checkout of test1 OK
attributes of test1
expiration: permanent
days until expiration: 0
checkout of not_there failed: License server does not support this product (-18)

If the checkout of test1 fails, it is likely that either the license server is not running, or
rlmVVVV.dll cannot be found.

Integrating RLM Embedded .NET into your Application

This manual serves as a description of the routines available for a license application to call and
how they behave. Refer to dotnet\Reprise\Reprise\RLMInterop.cs for the argument types and
return value types in the .NET world.

Include a:

using Reprise;

statement with any classes that invoke RLM, and precede RLM function names and constants with
"RLM.", for example, "RLM.rlm_checkout". See the example program RLMTest.cs for an
example.

You will need to include a reference to RLM in your application's project. The object to reference
is: <platform>\Reprise\Reprise\bin\<Debug or Release>\Reprise.dll

Several RLM Embedded functions are not supported in RLM Embedded .NET. They are:

◦ rlm_isv_cfg*
◦ rlm_sign_license
◦ rlm_add_isv_hostid
◦ rlm_add_isv_compare
◦ rlm_add_isv_multiple
◦ rlm_all_hostids
◦ rlm_auto_hb
◦ rlm_act_refresh

Table of Contents

RLM Embedded Reference Manual Page 62 of 157

Debugging Licensing Problems in the Field

In order to diagnose a licensing problem in the field, you will need some information from your
customer. RLM Embedded v8.0 and later provides client-side diagnostics which show the
application environment and local licenses available for checkout. In addition, RLM Embedded
v9.0 adds product debugging information.

Client-side Diagnostics

Built into every RLM Embedded v8.0 (and later) client is the ability to output environmental
information about the application's use of RLM Embedded. To enable this, your customer simply
sets the environment variable RLM_DIAGNOSTICS to the name of a file, then runs your
application. Once you call rlm_init(), RLM will write diagnostic information to the file name
specified. (Note that if you simply set RLM_DIAGNOSTICS without a value, the output will be
sent to standard out - which may not be what you want).

The resulting output will give the following information:

◦ time the program was run
◦ working directory
◦ relevant environment variables
◦ list of RLM's idea of the hostids on the machine where the application was run (including

your ISV-defined hostids)
◦ the license files in use, in the order RLM will use them (can be re-ordered from your normal

list if RLM_PATH_RANDOMIZE is set).
◦ the parameters you used in your call to rlm_init()
◦ a list of all local licenses which can be checked out.

An example of this information is contained here:

RLM Diagnostics at 10/09/2009 15:40

Environment:

 Hostname: paradise
 Working directory: /user/matt/rlm/test
 RLM platform: x64_s1
 OS version: 5.10

 HTTP_PROXY=<not set>
 RLM_CONNECT_TIMEOUT=<not set>
 RLM_EXTENDED_ERROR_MESSAGES=<not set>
 RLM_LICENSE=2700@paradise:a.lic:b.lic
 RLM_NO_UNLIMIT=<not set>
 RLM_PATH_RANDOMIZE=<not set>
 RLM_PROJECT=<not set>
 RLM_QUEUE=<not set>
 RLM_ROAM=1
 RLMSTAT=<not set>
 REPRISE_LICENSE=<not set>

 RLM hostid list:

 1d8bbd06 ip=172.16.7.13

License files:
 2700@paradise

RLM Embedded Reference Manual Page 63 of 157

 a.lic
 b.lic

rlm_init() parameters:
 1: <empty>
 2: client3
 3: <empty>

Local licenses which can be checked out

 In license file a.lic
 (no server)

 test1 v1.0 OK
 test2 v1.0 error:-5
 test2 v1.0 error:-3

In this example, you can see that a checkout of "test2" would not succeed with a nodelocked
license in license file a.lic, because the first test2 license has a bad license signature (error -5,
RLM_EL_BADKEY) and the second test2 license has expired (error -3, RLM_EL_EXPIRED).

You can also see that this application will attempt a checkout from the license server running on
node paradise at port 2700, if none of the local licenses will satisfy the checkout request.

Product Debugging Information

Beginning in RLM Embedded v9.0, your application will be enabled to output diagnostic
information about any or all product names. In order to do this, set the environment variable
RLM_DEBUG as follows:

◦ RLM_DEBUG set to an empty value – show information about all products

◦ RLM_DEBUG set to a string – show information about the product specified

This information can be obtained from the new rlmdebug utility (part of rlmutil), or directly from
your application. If the RLM_DEBUG environment varilable is set, the debugging information
will be output to stdout at the end of the rlm_init() call. For use of rlmdebug (which does not
require the RLM_DEBUG environment variable), see the RLM License Administration Manual.

Note that the most accurate information will be obtained from your application, since the exact
license file path used by the application will be available to the rlm debugging routines. The
stand-alone utility cannot know about default license files and paths which you set in your
rlm_init() call. Please note that RLM_DEBUG will only report on licenses which are present in
local license files. In other words, if you have a license path like “5053@server”, RLM_DEBUG
will report on whether the server is up, but it will not report on individual licenses served by that
server.

For example, with RLM_DEBUG set to an empty string:

% setenv RLM_DEBUG

The following (sample) output is displayed:

 RLM DEBUG for all products
 In license file: ../rlm/z.lic (5555@paradise):
 Product: test1, ISV: reprise, Floating

RLM Embedded Reference Manual Page 64 of 157

mailto:5555@paradise

 Product: test2, ISV: reprise, Floating
 Product: test3, ISV: reprise, Floating
 Product: rlm_roam, ISV: reprise, Uncounted
 Product: testr1, ISV: reprise, Floating
 Product: testr2, ISV: reprise, Floating
 Checking server machine "paradise" ... server UP
 Checking RLM server at port 5555 ... server UP

 In license file: a.lic:
 Product: test, ISV: reprise, Single

 8 product instances found

On the other hand, with RLM_DEBUG set to the name test:

% setenv RLM_DEBUG test

The following (sample) output is displayed:

 RLM DEBUG for product "test"

 In license file: ../rlm/z.lic (5555@paradise):
 Checking server machine "paradise" ... server UP
 Checking RLM server at port 5555 ... server UP
 No matching products found in license file

 In license file: a.lic:
 Product: test, ISV: reprise, Single

 1 product instances found

Table of Contents

RLM Embedded Reference Manual Page 65 of 157

Alias Licenses
Alias licenses are licenses that define themselves in terms of another license.

For example, an application could request a license for product write. If this were a normal license, the
product write would appear in the license file (if the request succeeds). On the other hand, if this were an
alias license, the product write would appear in the license file without a count, but with a specification of
one other product which is used to satisfy the request. When the client encounters a request for an alias
license, it uses the other product specified in the license to satisfy the request, rather than the originally-
requested product. This other license is called the primary license. The primary license must be another
nodelocked license.

A alias license differs from a normal license in a few significant ways:

 The count field contains one of the keyword alias rather than an integer, uncounted, or single.
 The license has an alias spec: alias="<prod ver count>"
 The only optional parameters on an alias license which are used by RLM are the start date, and the
hostid. All other optional parameters are ignored.

Example of an alias Licenses

When a product is specified as an alias license, requests for that product are turned into requests for the
primary license specified in the alias= part of the license. For example, consider this license for product
test (primary license dollars):

LICENSE reprise test 1.0 permanent alias sig=xxxx alias="<dollars 2.0 5>"

LICENSE reprise dollars 2.0 permanent hostid=abcdef01 sig=xxxx

A request for the product “test”, v1.0 will check out “dollars”, v2.0

The License Count Keyword

In an alias license, the count keyword is “alias”.

If you want the alias license usable only on a single host, include the “hostid=xxx” keyword in the
alias license itself.

The alias= keyword

In an alias license, the alias= keyword specifies the primary license which is checked out in response to a
request for the alias license itself. Specify only one license to be checked out. Although the syntax
processing is the same as for token-based licenses, only the first product specified will be used. These
licenses also cannot be alias licenses themselves. The format is:

 alias="<product1 ver1 count1>"

RLM Embedded Reference Manual Page 66 of 157

The request for the one of the original license turns into a checkout of count1 of product1, ver1

Nesting alias licenses

Alias licenses cannot be nested.

Restrictions on alias licenses

All alias licenses are processed by the client, so there can be no floating alias licenses, in fact, the license
server completely ignores alias licenses.

Use cases for alias licenses

Perhaps the most compelling use of an alias license is in conjunction with Activation Pro. If you sell
several different product bundles, your options for doing that are either to issue independent licenses for all
the products in the bundle, or to use an options= keyword in a single RLM license and decode the options
in your product. The second approach has a couple of disadvantages: (1) you have to process the options
yourself, and, more importantly (2) it becomes nearly impossible for your customer to select which bundle
they want to check out. The first approach (separate licenses) is easier for everyone, until you get to
issuing activation keys for the bundle. No one wants to issue N independent activation keys. Using alias
licenses allows you to avoid this. Let's say you have 4 products: a, b, c, and d, which you sell as 3 different
bundles: x, y, and z. With alias licenses, you can do the following, assuming you want a and b in bundle x,
a, b, and c in bundle y, and a, b, c, and d in bundle z:

1. create static definitions of the bundles, as follows:

alias a to x
alias b to x

alias a to y
alias b to y
alias c to y

alias a to z
alias b to z
alias c to z
alias d to z

These alias definitions can be shipped with your product, or updated when you have new bundle
definitions. The point is that they are the same for all your customers, and they are independent of
your code.

2. When your customer purchases bundle “y” for example, issue them an activation key for product
y. Now RLM will allow them to check out a, b, and c, based on those alias lines, but not d.

A second use of an alias license is to allow alternate licenses to satisfy a request for a product. To use the
familiar example, if product write checks out a write license, the addition of an alias license for write
mapping it to office would allow an office license to be used in the case where no write licenses are

RLM Embedded Reference Manual Page 67 of 157

available. Even though the office license is a more expensive license, the customer is allowed to continue
working by consuming the more expensive office license. Several alias licenses can be used in this way,
and the order of the licenses in the license file will determine the order that alternate checkouts are
attempted.

Table of Contents

RLM Embedded Reference Manual Page 68 of 157

ISV-defined Hostid Processing

RLM provides the ability to extend the native set of hostids by using your own routines to obtain host
identification which is unique to you. There are 2 methods to do this – the older, deprecated “isv-defined
hostid”, and the newer “ISV=” hostid type.

If you use the deprecated isv-defined hostid:
• Your customers cannot use the generic rlmhostid tool, you must write and ship your own tool.
• You cannot use the standard Activation Pro license generator, you must build a custom generator -

which may involve licensing an additional RLM platform.

Beginning in RLM v11.3, Reprise Software recommends using the new ISV= hostid type, which uses the
ISV-defined string as set by the rlm_set_environ() call. The advantages and disadvantages of doing this,
over the older ISV-defined hostid code are:

Advantages:
• no custom code to write (other than getting the string itself)
• you can use an Activation Pro generator settings file and avoid building a custom generator

Disadvantages (compared to the old isv-defined hostid):
• only one hostid of this type is supported on a system
• the hostid comparison code is always a case-insensitive strcmp() function

To use this hostid type, do the following:
1. Determine the hostid on your system (in your application).
2. Call rlm_set_environ(....., your-hostid), immediately after your call to rlm_init()
3. Use “isv=your-hostid”, as the hostid for your license.

If after reading this you still want to write code to create an isv-defined hostid, please contact Reprise
Software.

Table of Contents

RLM Embedded Reference Manual Page 69 of 157

Shipping Your Product as a Library or a Plugin

In some cases, your product might be a library/DLL/Shared Object which is linked into other
programs. If these other programs use RLM as well, you will need to do something to avoid name
collisions between your copy of RLM and the other program's copy of RLM (the other program
may use a different RLM version, for example).

The technique for accomplishing this is a bit different for Windows and Linux systems.

Windows

Create a DLL that contains the code for your product as well as the RLM Embedded code. When
you create the list of exports from the DLL, don't include any RLM Embedded functions.

If for any reason you need to keep your DLL and the RLM DLL separate, you should take these
additional steps to avoid collisions with other ISVs' versions of the RLM DLL which may be
present at runtime:

• Modify the makefile in the platform directory such that the name of the DLL that gets
built includes your ISV name. For example, if your ISV name is "xyz", modify these
lines in the makefile:

DLL = rlm$(VER).dll
DLLLIB = rlm$(VER).lib

to read:

DLL = xyz_rlm$(VER).dll
DLLLIB = xyz_rlm$(VER).lib

• Run nmake in the platform directory to build the DLL under the new name
• Change any code that references the DLL by name to reflect the new name. An example

is RLMInterop.cs - the C# interface to RLM.
• Link your DLL against <new DLL name>.lib
• Update your installer to include the RLM DLL, and install it in the same location as your

product's DLL.

This will ensure that at runtime even if multiple RLM DLLs are present on the machine, your code
will invoke the correct RLM DLL.

Linux

Create a shared object (.so) that contains the code for your product as well as the RLM Embedded
code. When you link your shared object, include the following on the command line:

-Wl,--version-script=file

RLM Embedded Reference Manual Page 70 of 157

(Note: the character after the uppercase W in the command above is a lowercase l, as in
“license” If you create the .so file with ld instead of cc, then just use the -version-
script=file option.

file should contain:
{

global:
function1;
function2;
...
functionN;

local:
*;

};

function1, function2, etc, are your functions that can be called from outside the shared object.

The advantage of this technique is that all the RLM Embedded symbols will be redefined as local
symbols in your .so file.

Alternately, you can specify the -Bsymbolic switch to ld, as follows:

ld -share -Bsymbolic your-object-files.o rlm.a

The -Bsymbolic option tells the loader to bind references to the global symbols in the rlm library
(and any other global symbols in your object list) to the definitions within your shared object
rather than using previous definitions from other shared objects. This works, however all the
RLM Embedded objects will remain globals in your .so file.

Table of Contents

RLM Embedded Reference Manual Page 71 of 157

Internet Activation

Overview of RLM Activation Pro

RLM Activation Pro allows you to deliver an activation key to your customer, and when they are
ready to use your product, a transaction with the activation server allows the license to be fulfilled
without manual intervention. When using activation, there is no need for you to get your user's
hostid information - this is transmitted to the activation server automatically.

A typical scenario would be that your customer runs the product on the desired machine, and if the
license had not been fulfilled earlier, the product asks for an activation key. Once the activation
key is supplied, the license is retrieved transparently. From this point on, the product runs with its
license in place.

RLM Activation Pro allows you to deliver rehostable licenses as well, by creating a license that is
locked to a hostid that can be removed from the target system when a rehost is requested.

RLM Activation Pro is an optional part of the RLM product. For complete details on RLM
Activation Pro, see the RLM Activation Pro Manual.

Table of Contents

RLM Embedded Reference Manual Page 72 of 157

Virtualization

RLM Embedded provides capabilities to enable and/or restrict the usage of your application in
virtual environments.

By default, RLM allows applications to run in virtual environments.

You can restrict application usage in virtual environments by using the "disable=vm" keyword in
the license. See the disable keyword in the LICENSE Linesection on page 40 in The License File
for more information.

Table of Contents

RLM Embedded Reference Manual Page 73 of 157

Securing Your Application

No software is 100% resistant to a talented and determined hacker, but there are steps that RLM
Embedded takes to thwart hackers, and there are steps your application can take as well. The best
possible protection is available from 3rd party application hardening providers, who are listed on
the Partners page at www.reprisesoftware.com. Short of that, here are some techniques that
hackers use to circumvent licensing in applications, and some steps you can take to thwart them.

DLL / shared object spoofing

If your application uses the RLM Embedded DLL (or Unix shared object) instead of linking to the
static RLM Embedded library, a hacker may substitute one of his own where rlm_checkout()
always succeeds. You can detect this in your code by attempting a license checkout that should
never succeed. For example, check out a license that your code never uses, or an impossibly high
version number or quantity. If it succeeds, then there’s a spoofed DLL or shared object present. If
you detect a spoof, you can elect not to fail immediately. Set a fail flag and check it later and fail
then. This makes it harder for the hacker to correlate the failure with the spoof check.

Public key injection

This is a technique whereby the hacker creates his own public-private key pair, and patches his
public key in place of the ISV’s public key in the application. Then the hacker can sign any
license using his own key pair and have the application authenticate it correctly. There are two
techniques that can be used to thwart this:

◦ Add extra calls to rlm_init() specifying NULL in the first two arguments, and passing a
license in the third argument that you have signed (using your authentic key pair). Then
attempt to check it out. If a different public key has been injected into the application, the
checkout will fail with a bad signature (-5) error. To make it more difficult for a hacker to
patch in his own license to your extra rlm_init() invocations, don’t store the license in a single
string in your code. Break it up into small bits and assemble it at runtime for passing to
rlm_init(), or store it in an encrypted form and decrypt it on the fly.

◦ Verify that the public key is in fact yours. You can do this by calling _rlm_get_pub() in your
application, which returns the bytes that make up the public key. The signature for the
function and the bytes of the key are in src/rlm_pubkey.c. Then check some number of bytes
in the key returned against what they should be.

You can use either one of these techniques or both. As with DLL spoof detection, consider
delaying failure if you detect an injected public key.

Decompilation of .NET, recompiling without licensing

Because the compiled format of .NET is much closer to a high-level language than traditional
object code, decompilers exist for those formats that produce very readable source code. With
decompiled source, the hacker can see where the licensing methods are called, remove them, and
recompile what amounts to a version of the application without licensing. Tools called
“obfuscators” can be used by ISVs to rearrange the application’s logic and obscure method and
variable names such that the decompiled code is very difficult to understand. Reprise does not
recommend any particular obfuscators, but there are several available.

RLM Embedded Reference Manual Page 74 of 157

http://www.reprisesoftware.com/

How RLM Clients Find the License

There are a number of ways for RLM clients to locate a license. These include:

◦ a license filename passed as argument 1 to rlm_init()

◦ a license filename contained in a directory passed as argument 1 to rlm_init()

◦ a license filename in the application binary directory, as passed in argument 2 to rlm_init()

◦ a license file referenced from the RLM_LICENSE or ISV_LICENSE environment variable.

◦ a port@host specification contained in the RLM_LICENSE or ISV LICENSE environment
variable

Note that Reprise Software recommends placing your license file in the directory with your
binary, and passing this directory name (usually “.”) as the 2 nd argument to rlm_init().

Table of Contents

RLM Embedded Reference Manual Page 75 of 157

mailto:port@host

Wide Character Support
Because of the way Unix and Linux systems store directory and filename information, that is, in
UTF-8, there has never been an issue with running RLM Embedded in wide-character
environments on those systems. On Windows however, where the operating system stores path
information in wide-characters, RLM Embedded has to be wide-character-aware.

Starting in v11.0, if an application passes paths to rlm_init() containing wide characters (wchar_t
or WCHAR strings), it must first convert those paths to UTF-8 before passing them to RLM
Embedded. RLM Embedded stores them internally as UTF-8, and converts back to wide
characters before using them in filesystem operations. In this way, RLM Embedded clients can be
installed on wide character paths and work correctly.

On Windows platforms, if the paths your application would pass to rlm_init() in the first and
second parameters are Unicode wide characters (wchar_t or WCHAR), you must first convert
them to UTF-8. The Win32 function WideCharToMultiByte() can be used for this conversion.

Table of Contents

RLM Embedded Reference Manual Page 76 of 157

Section 4 – Reference Material

RLM Embedded Reference Manual Page 77 of 157

Appendix A – RLM Embedded API

This appendix lists all the RLM Embedded API calls in alphabetical order.

To call any of the functions in the RLM Embedded API, you need to include the RLM Embedded
header file “license.h”:

#include "license.h"

RLM_HANDLE

RLM_HANDLE is the main handle in RLM Embedded. Your program needs to call rlm_init() to
get a handle; this only needs to be done once. This handle (or an RLM_LICENSE handle) is
passed to all the RLM Embedded api calls.

RLM_LICENSE

RLM_LICENSE is the license handle in RLM Embedded. This handle is returned from the
rlm_checkout() call, and is passed to the rlm_license_stat(), rlm_get_attr_health() and
rlm_checkin() calls.

N.B. RLM_LICENSE is also the name of the environment variable for specifying the license file
path.

Core API – these 8 functions provide all basic licensing operations needed for most applications:

rlm_init() - initalize licensing operations with RLM Embedded.
rlm_close() - Terminate licensing operations with RLM Embedded.
rlm_checkout() - Request a license.
rlm_checkin() - Release a license.
rlm_errstring() - Format RLM Embedded status into a string.
rlm_stat()- Retrieve RLM_HANDLE status.
rlm_license_stat() - Retrieve RLM_LICENSE status.
rlm_get_attr_health() - Check license status.

Advanced API – most applications will need few, if any, of these calls:

rlm_activate()
rlm_act_info()
rlm_act_destroy_handle()
rlm_act_fulfill_info()
rlm_act_info()
rlm_act_keyinfo()
rlm_act_keyvalid()
rlm_act_new_handle()
rlm_act_revoke()
rlm_act_set_handle

RLM Embedded Reference Manual Page 78 of 157

rlm_add_isv_hostid()
rlm_add_isv_hostid_compare()
rlm_add_isv_hostid_multiple()
rlm_detached_demo()
rlm_detached_demox()
rlm_errstring_num()
rlm_get_attr_lfpath()
rlm_get_rehost()
rlm_hostid()
rlm_all_hostids()
rlm_all_hostids_free()
rlm_license_XXXX()
rlm_products()
rlm_putenv()
rlm_set_attr_req_opt()
rlm_set_attr_reference_hostid()
rlm_sign_license()

Namespace

All RLM client library functions have names beginning with rlm_ or _rlm_.

All defined constants in license.h begin with RLM_

All the RLM Embedded API functions are described (in alphabetical order) on the following pages.

Table of Contents

RLM Embedded Reference Manual Page 79 of 157

rlm_activate() - Request a license activation from the internet

#include "license.h"
RLM_HANDLE rh;
int stat;
const char *akey;
int count;
char license[3*(RLM_MAX_LINE+1)];
RLM_ACT_HANDLE act_handle;

rh = rlm_init(...);
stat = rlm_activate(rh, url, akey, count, license, act_handle);

rlm_activate() is the preferred call to request license activation from the internet. url is the
location of the activation server (without the trailing /cgi-bin/ISV_mklic) The activation key akey
and license count count are sent to the server. Note that if the license count is <= 0, a count of 1 is
used. Beginning in RLM v9.0, a count of 0 has a special meaning for NORMAL activation
fulfillments of floating licenses – a count of 0 requests that all remaining licenses be fulfilled for
this request. In this way, your activation code does not need to supply the number of licenses
ordered during fulfillment time. Note that a request of 0 will not retrieve an already-activated
license - in order to re-retrieve an already-activated license, you must specify the number of
licenses actually generated. If the akey parameter contains an embedded newline,
rlm_act_request() will return RLM_EL_BADPARAM.

Beginning in RLM v9.4, the ISVNAME_ACT_URL environment variable will override the url
parameter to this call. This allows you to change the URL of the activation server without re-
building your software. For example, if your ISV name is “demo”, the environment variable
would be named “DEMO_ACT_URL”, and you would set it to the URL to use for activation if
the url parameter in this call is no longer correct.

Note that the URL should always be http, never https. rlm_activate() encrypts the
request independent of the webserver.

Prior to v11.0, rlm would only activate licenses with rehostable, non-zero RLM_HOSTID_32BIT,
RLM_HOSTID_ETHER, RLMIDn, RLM_DISKSN, or ISV-defined hostids. Any other hostid
will return an RLM_ACT_BAD_HOSTID_TYPE status from rlm_activate(). (Note: ISV-defined
hostids were added to the list of legal hostids in RLM v4.0). Beginning in v11.0, you can specify
exactly the hostids you will accept with the rlm_isv_cfg_actpro_allowed_hostids() call in
rlm_isv_config.c, then either re-building your license generator or creating a new generator
settings file. See Customizing RLM Embedded with rlm_isv_config on page 25 for more details.

The priority is (assuming the particular hostid type is enabled):
• rehostable hostid
• ISV-defined hostid
• rlmid hostid
• Disk Serial Number
• ethernet address
• 32-bit hostid
• ip address hostid
• user-based hostid
• host-based hostid
• serial number hostid

RLM Embedded Reference Manual Page 80 of 157

• string hostid
• DEMO hostid
• ANY hostid

If none of the hostid types above are present (or enabled), the activation software will return
RLM_ACT_BAD_HOSTID_TYPE. Beginning in RLM v11.2, if
RLM_ACT_BAD_HOSTID_TYPE is returned, the “license” parameter will contain the decimal
representation of the list of valid hostids (as defined in license.h, in the
RLM_ACTPRO_ALLOW_xxx definitions). This parameter is a string which represents a decimal
number containing a bitwise OR of the allowed hostid types. To decode the alllowed hostid types
from the license string, use code similar to this:

allowed = atoi(license);

You can override RLM's notion of the hostid by calling rlm_act_set_handle() with the
RLM_ACT_HANDLE_HOSTID_LIST parameter. The hostid_list parameter can contain a list of
hostids for use in nodelocked licenses. This is specified with the following syntax:

list:list-of-hostids

For example:

list:user=joe host=sam ip=192.16.7.23 3f902d8b0027

If a list is supplied, note the following:

• The activation software uses the hostids in the list as you specified, even if they are not
"secure".

• If the license to be activated is a served license (floating), only the first hostid in the list is
used.

• The number of available activations on the activation key is decremented by 1 regardless
of the number of hostids in the license created.

• The hostid list must be less than RLM_ACT_MAX_HOSTID_LIST characters long
(205) including the “list:” prefix.

• The hostid list can contain no more than RLM_MAX_HOSTID_LIST (25) hostids.

This capability can be used to create a license which works on 2 (or more) systems, e.g.
to create a license for a primary and a backup system. It can also be used to pass a hostid
of a less secure type to be used, e.g. the hostid-list "list:ip=172.16.7.12" will cause the
activation software to use the IP address as a hostid without returning
RLM_ACT_BAD_HOSTID_TYPE.

If act_handle is NULL, no optional parameters are specified. If act_handle is passed to
rlm_activate() as a non-NULL handle, other, lesser-used parameters can be specified:

• isvname – if different from your ISV name.

• hostid – if you do not want to use the default hostid.

• hostname – if you want to change the notion of your hostname

• extra – any extra license parameters

RLM Embedded Reference Manual Page 81 of 157

• log – information to log to the activation server (Activation Pro only).

These other parameters are passed in by calling rlm_act_new_handle() and rlm_act_set_handle()

The parameter license must be an allocated string of length 3*(RLM_MAX_LINE+1). If
rlm_activate() succeeds, the activated license is returned in this string. For certain errors, the
license string will contain MySQL error information, otherwise it will be an empty string.

Status returns >=0 indicate success, < 0 are failure status.

Status Meaning

0
license was activated, first request, activation

count consumed

1

license previously activated. Activation count is
not consumed; the prior license is returned. This

status indicates that a duplicate activation
key/count/hostid was sent to the server.

RLM_ACT_BADPARAM Bad parameter to activation function

RLM_ACT_NO_KEY No Activation key supplied

RLM_ACT_NO_PROD No product definition (internal database error)

RLM_ACT_CANT_WRITE_KEYS Cannot write activation keys (admin tool)

RLM_ACT_KEY_USED Activation key used already (no count remaining)

RLM_ACT_BAD_HOSTID Missing hostid

RLM_ACT_BAD_HOSTID_TYPE Invalid hostid type

RLM_ACT_BAD_HTTP Bad HTTP transaction

RLM_ACT_CANTLOCK Cannot lock activation database

RLM_ACT_CANTREAD_DB Cannot read activation database

RLM_ACT_CANT_WRITE_FULFILL Cannot write fulfillment (licf) table

RLM_ACT_CLIENT_TIME_BAD
Time difference too great from server->client

system

RLM_ACT_BAD_REDIRECT Bad http Redirect

RLM_ACT_TOOMANY_HOSTID_CHANGES Too many hostid changes for redirect

RLM_ACT_BLACLISTED Domain on blacklist

RLM_ACT_NOT_WHITELISTED Domain not on whitelist

RLM_ACT_KEY_EXPIRED Activation Key expired

RLM_ACT_NO_PERMISSION HTTP request denied

RLM_ACT_SERVER_ERROR HTTP internal server error

RLM_ACT_BAD_GENERATOR Bad or missing license generator file

RLM_ACT_NO_KEY_MATCH No matching activation key found in database

RLM_ACT_NO_AUTH_SUPPLIED No proxy authentication credentials supplied

RLM_ACT_PROXY_AUTH_FAILED Proxy authentication failed

RLM_ACT_NO_BASIC_AUTH
Activation supports only BASIC proxy

authentication

RLM_EH_CANTCONNECT_URL Cannot connect to specified URL

RLM Embedded Reference Manual Page 82 of 157

RLM_ACT_GEN_UNLICENSED Activation generator unlicensed

RLM_ACT_DB_READERR Activtion DB read error (MySQL)

RLM_ACT_GEN_PARAM_ERR Generating license - bad parameter

RLM_ACT_UNSUPPORTED_CMD Unsupported command to generator

If you are using Activation Pro, you should consult the Activation Pro manual for troubleshooting
tips and additional error returns.

Proxy Server Support

RLM activation has support for proxy servers. To use a proxy server, there are 2 environment
variables which must be set:

HTTP_PROXY- set to the hostname:port of the proxy server. For example, if your proxy server
is on port 8080 on host proxy_host:

% setenv HTTP_PROXY proxy_host:8080

If your proxy server uses authentication, you can use the HTTP_PROXY_CREDENTIALS
environment variable to pass the credentials to the proxy server:

HTTP_PROXY_CREDENTIALS - the username and password to authenticate you to the proxy
server, in the format user:password. For example, if your username is "joe" and password is
"joes_password":

% setenv HTTP_PROXY_CREDENTIALS joe:joes_password

Note that RLM activation supports only the BASIC authentication type.

You can either set these environment variables before running your application, or use putenv()
(or rlm_putenv()) to set them inside your application before calling rlm_activate().

rlm_activate() encrypts the data sent to the activation server. Beginning in RLM v9.1, if
RLM_ACT_NO_ENCRYPT is set in the environment, rlm_act_request() will not encrypt the data
sent to the activation server.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 83 of 157

rlm_act_info() - Get info about an activation key from the server.

#include "license.h"
RLM_HANDLE rh;
const char *url = “your activation server URL here”;
char *akey = “activation-key-desired”;
char product[RLM_MAX_PRODUCT+1];
char version[RLM_MAX_VER+1];
char upgrade_version[RLM_MAX_VER+1];
int date_based;
int license_type;
int status;

rh = rlm_init(...);
status = rlm_act_info(rh, url, akey, product, version, &date_based, &license_type,
upgrade_version);

The rlm_act_info() call presents the activation key akey to the server at url and retrieves
information about the license which would be generated by this key.

Note that the URL should always be http, never https. rlm_act_info() encrypts the
request independent of the webserver.

NOTE: Prior to RLM v11.0, rlm_act_info() returned the information for disabled
activation keys. Beginning in RLM v11.0, rlm_act_info() will return
RLM_ACT_KEY_DISABLED with no further information for disabled activation keys.

The rlm_act_info() call returns 0 for success, or an RLM errror code otherwise.

The returned information is passed back in the last 5 parameters:

• product – the product name in the license that would be generated from this activation
key.

• version – the version in the generated license. If date_based is non-zero, this is a string
representing an integer number of months; the version is a date-based version of the form
yyyy.mm for this number of months after license generation. If date_based is 0, the
actual license version is returned in this parameter.

• date_based – non-zero indicates that the version string is the number of months after
license generation for a date-based version.

• license_type – this is the type of license that will be generated. These types are defined
in license.h:

#define RLM_ACT_LT_FLOATING 0 /* Floating */

#define RLM_ACT_LT_F_UPGRADE 4 /* Floating UPGRADE */

#define RLM_ACT_LT_UNCOUNTED 1 /* Nodelocked, Uncounted */

#define RLM_ACT_LT_NLU_UPGRADE 5 /* Nodelocked, Uncounted UPGRADE */

#define RLM_ACT_LT_SINGLE 3 /* Single */

RLM Embedded Reference Manual Page 84 of 157

#define RLM_ACT_LT_S_UPGRADE 7 /* Single UPGRADE */

• upgrade_version – the version eligible for an upgrade for UPGRADE type licenses. This
is always a fixed string (ie, it is never date-based). For non-upgrade licenses, this will be
an empty string.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 85 of 157

rlm_act_keyinfo2() - Get the most info about an activation key

rlm_act_fulfill_info() - Get info about key and latest fulfillment.

rlm_act_info() - Get info about an activation key from the server.

rlm_act_keyinfo() - Get info about an activation key from the server.
#include "license.h"
RLM_HANDLE rh;
const char *url = “your activation server URL here”;
char *akey = “activation-key-desired”;
char product[RLM_MAX_PRODUCT+1];
char version[RLM_MAX_VER+1];
char upgrade_version[RLM_MAX_VER+1];
char exp[RLM_MAX_EXP+1];
char keyexp[RLM_MAX_EXP+1];
char hostid[RLM_MAX_HOSTID_STRING+1];
int date_based;
int license_type;
int status;
int count, fulfilled, rehosts, revoked, allowed_hostids, sub_interval, sub_window;

rh = rlm_init(...);

status = rlm_act_keyinfo2(rh, url, akey, product, version, &date_based, &license_type,
upgrade_version, &count, &fulfilled, &rehosts, &revoked, exp, hostid, keyexp,
&allowed_hostids, &sub_interval, &sub_window);

(note: rlm_act_keyinfo2() returns a superset of the information from all the other calls, and it is the
preferred call).

status = rlm_act_info(rh, url, akey, product, version, &date_based, &license_type,
upgrade_version);

status = rlm_act_keyinfo(rh, url, akey, product, version, &date_based, &license_type,
upgrade_version, &count, &fulfilled, &rehosts, &revoked);

status = rlm_act_fulfill_info(rh, url, akey, product, version, &date_based, &license_type,
upgrade_version, &count, &fulfilled, &rehosts, &revoked, exp, hostid);

The rlm_act_info() call presents the activation key akey to the server at url and retrieves
information about the license which would be generated by this key.

The rlm_act_keyinfo() returns everything that rlm_act_info() returns, plus some fulfillment
information about the activation key.

The rlm_act_fulfill_info() returns everything that rlm_act_keyinfo() returns, plus the actual
expiration date and hostid from the most recent fulfillment on the activation key. If no fulfillments
have been made (i.e. fulfill == 0), the return values exp and hostid are undefined.

Note that the URL should always be http, never https. rlm_act_info() encrypts the
request independent of the webserver.

RLM Embedded Reference Manual Page 86 of 157

NOTE: Prior to RLM v11.0, rlm_act_info() returned the information for disabled
activation keys. Beginning in RLM v11.0, rlm_act_info() will return
RLM_ACT_KEY_DISABLED with no further information for disabled activation keys.

The rlm_act_info() call returns 0 for success, or an RLM errror code otherwise.

The returned information is passed back in the last 5 parameters:

• product – the product name in the license that would be generated from this activation
key.

• version – the version in the generated license. If date_based is non-zero, this is a string
representing an integer number of months; the version is a date-based version of the form
yyyy.mm for this number of months after license generation. If date_based is 0, the
actual license version is returned in this parameter.

• date_based – non-zero indicates that the version string is the number of months after
license generation for a date-based version.

• license_type – this is the type of license that will be generated. These types are defined
in license.h:

#define RLM_ACT_LT_FLOATING 0 /* Floating */

#define RLM_ACT_LT_F_UPGRADE 4 /* Floating UPGRADE */

#define RLM_ACT_LT_UNCOUNTED 1 /* Nodelocked, Uncounted */

#define RLM_ACT_LT_NLU_UPGRADE 5 /* Nodelocked, Uncounted UPGRADE */

#define RLM_ACT_LT_SINGLE 3 /* Single */

#define RLM_ACT_LT_S_UPGRADE 7 /* Single UPGRADE */

• upgrade_version – the version eligible for an upgrade for UPGRADE type licenses. This
is always a fixed string (ie, it is never date-based). For non-upgrade licenses, this will be
an empty string.

In addition to the above information, rlm_act_keyinfo() returns fulfillment information:

• count – the allowed fulfillment count (0 = unlimited)

• fulfilled – the # already fulfilled

• rehosts – the number of rehost operations allowed

• revoked – the number of revocations already performed

Note that when revoked==rehosts, no additional license revocations will be allowed.

In addition to the above information, rlm_act_fulfill_info() returns recent fulfillment information:

• exp – the actual expiration date of the latest fulfillment.

• hostid – the hostid from the latest fulfillment.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 87 of 157

rlm_act_keyvalid(), rlm_act_keyvalid_license() - Verify that an
activation key still has a valid license on this hostid from the
activation server.

#include "license.h"
RLM_HANDLE rh;
const char *url = “your activation server URL here”;
char *akey = “activation-key-desired”;
char hostid[RLM_MAX_HOSTID+1];
char license[RLM_ACT_MAX_LICENSE+1];
int status;

rh = rlm_init(...);
status = rlm_act_keyvalid(rh, url, akey, hostid);
status = rlm_act_keyvalid_license(rh, url, akey, hostid, license);

The rlm_act_keyvalid() call presents the activation key akey and hostid to the server at url and
retrieves status of fulfilled licenses on this hostid for this activation key.

Note that the URL should always be http, never https. rlm_act_keyvalid() encrypts the
request independent of the webserver.

The rlm_act_keyvalid() call returns:

• 0 for success, ie, a non-revoked license has been generated on this hostid for this
activation key.

• RLM_ACT_KEY_DISABLED if the activation key itself is disabled.

• RLM_ACT_KEY_NO_HOSTID if there is no fulfilled license matching this hostid for
this activation key, or

• RLM_ACT_KEY_HOSTID_REVOKED if the only fulfilled license(s) for this hostid on
this activation key have been revoked, or

• RLM_EH_ACT_OLDSERVER or RLM_ACT_UNSUPPORTED_CMD if the activation
server is too old to process this request.

There is no other returned information.

The rlm_act_keyvalid_licenese() call performs the same operation with the same return as
rlm_act_keyvalid(), but in addition, it returns the license if the status return is 0. Note that in the
case of a floating license which has had multiple fulfillments, the license returned will be one of
the licenses generated with this activation key (in general, the first license generated). If the status
return is non-zero, the contents of license are undefined. rlm_act_keyvalid_license() is new in
RLM v11.1, and requires an RLM v11.1 activation pro server to return the license.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 88 of 157

rlm_act_new_handle(), rlm_act_destroy_handle() - Create/destroy
handle to pass activation parameters.

#include "license.h"
RLM_HANDLE rh;
RLM_ACT_HANDLE act_handle;

rh = rlm_init(...);
act_handle = rlm_act_new_handle(rh);

(void) rlm_act_destroy_handle(act_handle);

rlm_act_new_handle() creates a blank handle to pass optional activation parameters to
rlm_activate(). rlm_act_new_handle() returns a NULL handle on error.

Call rlm_act_new_handle() before calling rlm_act_set_handle(). After activation is complete,
call rlm_act_destroy_handle() to free the memory associated with the handle.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 89 of 157

rlm_act_set_handle() - Set data in activation handle.

#include "license.h"
RLM_ACT_HANDLE act_handle;
int stat;
int what;
void *val;

stat = rlm_act_set_handle(act_handle, what, val);

rlm_act_set_handle() sets various options in an activation handle in order to pass these activation
parameters to rlm_activate(). rlm_act_new_handle() returns 0 for success,
RLM_EH_BADPARAM on error (no handle supplied, no value supplied, or bad “what” value).

Call rlm_act_set_handle() after calling rlm_act_new_handle(). After activation is complete, call
rlm_act_destroy_handle() to free the memory allocated in the handle.

“what” values:

All values for the “what” parameter are defined in license.h:

• RLM_ACT_HANDLE_DISCONN: (int val)

If set to 1, rlm_activate() will create a rehostable hostid, then return data in the “license”
parameter. Take this data to an internet-connected system, pass the data back into
rlm_activate() in the hostid_list parameter when requesting the activation (again with
RM_ACT_HANDLE_DISCONN set). See the “License Rehosting” appendix in the
Activation Pro manual for details on how to make these calls.

• RLM_ACT_HANDLE_EXTRA: (const char * val)

This parameter is used to pass extra license options to the activation server. val is a string
containing extra "keyword=value" license attributes. These must be valid RLM license
syntax, not just any keyword=value pair. Note that the val string should not contain
characters illegal in license files, and most particularly, it should not contain the '&'
character, which is illegal in a license file and also is the cgi separator in web requests. If
you put space-separated strings into the extra parameter, be sure to enclose them in
quotes. For example: set extra to "customer=\"Your Customer Name Here\"" in order to
put your customer name into the generated license, or set it to "customer=\"Your
Customer Name Here\" min_timeout=100" to set your customer name and the minimum
timeout.

• RLM_ACT_HANDLE_HOSTID_LIST: (const char * val)

This parameter is used if you want to pass a particular hostid (other than the default) or a
list of hostids to the activation server.

the hostid_list parameter can contain a list of hostids for use in nodelocked licenses. This
is specified with the following syntax:

list:list-of-hostids

For example:

RLM Embedded Reference Manual Page 90 of 157

list:user=joe host=sam ip=192.16.7.23 3f902d8b0027

If a list is supplied, note the following:

• The activation software uses the hostids in the list as you specified, even if they
are not "secure".

• If the license to be activated is a served license (floating), only the first hostid in
the list is used.

• The number of available activations on the activation key is decremented by 1
regardless of the number of hostids in the license created.

• The list will not be accepted by the server if encryption of the request is turned
off with RLM_ACT_NO_ENCRYPT

This capability can be used to create a license which works on 2 (or more) systems, e.g.
to create a license for a primary and a backup system. It can also be used to pass a hostid
of a less secure type to be used, e.g. the hostid-list "list:ip=172.16.7.12" will cause the
activation software to use the IP address as a hostid without returning
RLM_ACT_BAD_HOSTID_TYPE.

• RLM_ACT_HANDLE_HOSTNAME: (const char * val)

This parameter is used for the (rare) case where you want to pass a specific hostname to
the activation server.

• RLM_ACT_HANDLE_LOG: (const char * val)

This parameter is used to pass a string to be logged in the activation server database. This
parameter will override any setting of the RLM_ACT_LOG environment variable. (Note:
the use of the RLM_ACT_LOG environment variable is deprecated, and is not
guaranteed to work in all future versions of RLM. Setting logging using the
rlm_act_set_handle() call is preferred).

RLM Activation Pro allows you to log an arbitrary string to the database every time you
fulfill a license. This string can be up to 80 characters in length and it will appear in the
'log' column in the licf table.

• RLM_ACT_HANDLE_ISV: (const char * val)

This parameter, which takes a (char *) value, is used to set the ISVname, if it is different
from your ISV name. This will not normally be used. It is used, for example, in the rlm
web interface to request an activation from a specified ISV's activation server.

• RLM_ACT_HANDLE_PRODUCT: (char * val)

This parameter, which takes a (char *) value, is used to set the product name when you
are preparing to do activation of a rehostable hostid on a disconnected system. This will
not normally be used. RLM_ACT_HANDLE_DISCONN should also be set when the
product name is set. See the Activation Pro manual for more information.

RLM Embedded Reference Manual Page 91 of 157

• RLM_ACT_HANDLE_REHOST: (int val)

If set to 1, rlm_activate() will create a rehostable hostid, then activate the license using
that rehostable hostid. If the hostid already exists for the product associated with the
activation key, rlm_activate() will return RLM_EH_REHOST_EXISTS and will not
proceed with the activation Once created, the contents of the rehostable hostid directory
CANNOT BE TOUCHED, MODIFIED, DELETED, or RESTORED from a BACKUP
without invalidating the hostid. NOTE: REHOSTable hostids can be used with
nodelocked, uncounted, and SINGLE licenses only.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 92 of 157

rlm_act_revoke() - revoke a rehostable license

rlm_act_revoke_reference() - revoke a rehostable hostid by
“reference” hostid.

rlm_act_revoke_disconn() - revoke a disconnected rehostable license

#include "license.h"
RLM_HANDLE rh;
char *url;
char *product, *param;
char retval[RLM_MAX_LINE+1];
int stat;

rh = rlm_init(...);
stat = rlm_act_revoke(rh, url, product);

stat = rlm_act_revoke_reference(rh, url, product);

stat = rlm_act_revoke_disconn(rh, url, param, retval);

rlm_act_revoke() causes RLM to revoke a rehostable hostid by taking the following actions:

• contacts the activation server at url and tells it to revoke all activations performed for the
revokable hostid for product product.

• removes the hostid for product from the system

If rlm_act_revoke() cannot contact the activation server, or no fulfillments have been made using
rehostable hostids for product, or the rehostable hostid for product does not exist,
rlm_act_revoke() will return a non-zero error status. Otherwise, rlm_act_revoke() returns a 0
status to indicate success.

Note that the URL should always be http, never https. rlm_act_revoke() encrypts the
request independent of the webserver.

Once a license is revoked with rlm_act_revoke(), it will no longer work on the system, and
activation count associated with the fulfillment to this system will be returned to the activation
server so that your customer can re-activate the license on another system.

rlm_act_revoke_reference() performs the same operation as rlm_act_revoke(), but it will work
even when the rehostable hostid is bad or missing on the system. You must decide if you are
willing to revoke the license in this case, and you should only call rlm_act_revoke_reference()
after rlm_act_revoke() fails with an RLM_EH_CANT_GET_REHOST or
RLM_EL_NOTTHISHOST status.

rlm_act_revoke_disconn() is used to perform a rehostable hostid revocation on a system which is
not connected to the internet. For the usage of this function, see the “License Rehosting” appendis
in the RLM Activation Pro manual.

Note that rlm_act_revoke() will return RLM_ACT_REVOKE_TOOLATE (-1029) if
the license associated with the rehostable hostid has expired, and you have not enabled
“Revocation of expired rehostable hostids” in the Database section of the Admin tab in
RLM License Center. This error means that no count was returned to the activation

RLM Embedded Reference Manual Page 93 of 157

key, however, the rehostable hostid was deleted in this case. If there is sufficient count
in the activation key, or if a different activation key is used, a new rehostable
activation will succeed.

The most likely scenario where you would see this is as follows:

 1. user attempts to check out license, gets RLM_EL_EXPIRED status.
 2. user then attempts to re-activate the license, gets RLM_EH_REHOST_EXISTS
 3. user then attempts to revoke the activation, gets
RLM_ACT_REVOKE_TOOLATE

at this point, the rehostable hostid is gone, and the user can re-activate successfully.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 94 of 157

rlm_add_isv_hostid() - Enable ISV custom hostid processing

#include "license.h"
RLM_HANDLE rh;
char *keyword;
int type;
int transient;
int (*func(char *, RLM_HANDLE));

status = rlm_add_isv_hostid(rh, keyword, type, transient, int (*func)())

where:
rh - is the RLM_HANDLE
keyword - is the hostid's keyword as described below
type - is the hostid's type as described below
transient - is set to a non-zero value if the hostid can change
func - is the hostid's runtime discovery function as described below

rlm_add_isv_hostid() returns:

0 if successful
RLM_EH_DUP_ISV_HID if the keyword and/or type has already been used in another ISV-

defined hostid
RLM_EH_BADPARAM if the keyword is NULL or its length is > 10 bytes, or if type is <

RLM_ISV_HID_TYPE_MIN

Certain ISVs require their own private hostid type, especially to support an inventory of existing dongles.
This section describes how to support your own hostid in RLM.

Note: Reprise Software discourages the use of ISV-defined hostids. If you use ISV-defined hostids:

• You cannot use a ISV server settings file, instead, you must ship a binary, which means
your customers cannot get bug fixes with a new generic rlm server.

• Your customers cannot use the generic rlmhostid tool, you must write and ship your own
tool.

• You cannot use the standard Activation Pro license generator, you must build a custom
generator - which may involve licensing an additional RLM platform.

An ISV-defined hostid consists of 3 parts:

1.A keyword which identifies the hostid type in a license (eg, hostid=MYHOSTID=abcdefghi).
MYHOSTID is the keyword, which you chose. The keyword must be <= 10 characters long, and must
be unique among all your hostid types.

2.An integer type, which is used by RLM to differentiate among hostid types. The type of a hostid
must be >= RLM_ISV_HID_TYPE_MIN, and must be unique across all your hostid types. You
choose this number.

RLM Embedded Reference Manual Page 95 of 157

3.A function you write which is used to determine the value of the hostid of that type at runtime. For
instance if the ISV-defined hostid type was a dongle ID, the function would read the dongle's ID and
return that value. The function's prototype is:

int <name>(char *, RLM_HANDLE)

RLM calls this function at server runtime and/or licensed application runtime. The function should return 0
if it succeeds, or non-zero if it doesn't. The function returns the hostid as a NULL-terminated string in the
char array pointed to by the function argument. The returned string must not exceed 64 bytes in length
(RLM_MAX_HOSTID), and may not contain any white space, and must consist of all printable characters.
The string space is allocated on the stack (RLM_MAX_HOSTID+1 bytes) and initalized to all 0's, so if you
write more than RLM_MAX_HOSTID bytes, you risk corrupting data inside your application or license
server and/or crashing the process. Your function will be passed an empty RLM_HANDLE as it's second
parameter. You can use this handle if you need to call RLM functions which require a handle. This
parameter is new in RLM v9.1.

Note that beginning in RLM v8.0, the three conditions on ISV-defined hostid strings are enforced. These
conditions are:

• must be <= 64 characters
• can contain no whitespace, and
• must consist of all printable characters.

These restrictions were not enforced prior to RLM v8.0. If any of these conditions are violated, the hostid
will not be processed, and will produce an RLM_HOSTID_INVALID hostid type.

You may have zero, one, or more ISV-defined hostids. Each hostid must have a unique type, keyword, and
function. Each ISV-defined hostid type is identified to RLM via a function call made to
rlm_add_isv_hostid() in your rlm_isv_config.c module.

Note that rlm_add_isv_hostid() must be called from rlm_isv_config.c for each of your ISV-defined hostid
types. See the example in the rlm_isv_config.c file shipped on the kit. Do not call rlm_add_isv_hostid()
from anywhere else in your application.

Transient hostids

A hostid can be transient or not. A transient hostid is one which may change state, and needs to be checked
periodically. For example, a dongle would be considered a transient hostid, because it can be removed from
the computer while the software is running. If your hostid type is transient, be sure to set the transient
parameter of this call to a non-zero value. If the hostid type is transient, the hostid will be verified once per
minute in the license server and each time that rlm_get_attr_health() is called in your application (but not
more often than once every 30 seconds, unless the hostid does not return the correct value, in which case it
is checked each time rlm_get_attr_health() is called).

Supporting multiple instances of a single hostid type

In rare circumstances, it is necessary to support multiple instances of a single hostid type. This may be the
case, for example, if you need to support multiple dongleIDs on a single machine.

For this case, there is an alternate call, rlm_add_isv_hostid_multiple(). This call takes an extra function
parameter, as described in the next section.

RLM Embedded Reference Manual Page 96 of 157

Client-side hostid processing

When an application requests a license from a license server, it will transmit the hostid information from
the local machine to the license server, so that the server can process node-locked licenses without
additional queries to the application. The application will transmit a maximum of 25 different hostids:

• one 32-bit hostid, if present on this platform
• one disk hardware serial number (disksn=) - Windows only
• one IP address
• up to 8 ethernet MAC addresses (ether=)
• a minimum of 3 ISV-defined hostids (usually more, but guaranteed to be at least 3)

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 97 of 157

rlm_add_isv_hostid_compare() - Install ISV custom hostid comparison
routine

status = rlm_add_isv_hostid_compare(RLM_HANDLE rh, int type, int (*compare)(int, char *,
char *))

where:

rh is the RLM_HANDLE
type is the hostid's type
compare() is the comparison routine

RLM, by default, compares the hostid in the license file with the return from your ISV-defined hostid
routine using a strcasecmp() function. However, in some cases, it is desirable to have another comparison
routine, for example, if you want to allow for some differences between the hostid on the current system
and what is in the license. In order to accomplish this, you can register a comparison routine for any ISV-
defined hostid you have registered. To do this, call rlm_add_hostid_compare(). Once installed, when RLM
needs to compare 2 instances of the ISV-defined hostid type, it will call the compare() routine to do this
comparison rather than the default algorithm (strcasecmp()).

compare() is called as follows:

status = *compare(int type, char *hostid1, char *hostid2);

where:

type is the hostid's type
hostid1 and hostid2 are the 2 hostids to be compared.

compare() should return 0 if the hostids are the same, and RLM_EL_NOTTHISHOST if the two hostids
are not the same.

Note that you cannot assume that you are running on the system which produced either hostid. You will be
running on a different machine, for example, when the license server is verifying client hostids for node-
locked licenses which it is serving. This machine may be a different platform type as well. Also note that if
you are using hostid comparison routines, you must register your ISV-defined hostid and comparison
routine in your ISV server, even if you only issue nodelocked licenses using your ISV-defined hostid. This
is because the server must be able to execute your comparison routine.

The comparison routine is passed 2 hostids. It is undefined which hostid came from the license file and
which came from the running system. In fact, this routine will be called on occasion to compare hostids
from 2 different license files, in which case neither hostid came from a client system.

rlm_add_isv_hostid_multiple() returns:

0 if successful, RLM_EH_BADPARAM if the hostid type is not already defined.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 98 of 157

rlm_add_isv_hostid_multiple() - Enable ISV custom hostid processing -
support multiple instances

status = rlm_add_isv_hostid_multiple(RLM_HANDLE rh, char *keyword, int type, int
transient, int (*func_first)()), int (*func_next)())

where:

rh is the RLM_HANDLE
keyword is the hostid's keyword
type is the hostid's type
transient is set to a non-zero value if the hostid can change
func_first returns the first instance of the hostid - same as the func argument to
rlm_add_isv_hostid()
func_next returns the next instance of the hostid

RLM will call the func_first() routine first. You should initialize the list of hostid instances in this function,
and return the first one, then prepare to return each additional one in turn when func_next() is called. Return
0 if there is at least one instance of this hostid type, and non-zero if no instances are present on this
machine.

RLM will then call the func_next() routine until it returns a non-zero result. You should return each
additional hostid instance in turn when func_next() is called. Return 0 if func_next() is returning a hostid
instance, and non-zero if no more instances are present on this machine. NOTE: func_next() may be called
even if func_first() returns a non-zero value; in this case, func_next() should return a non-zero value as
well.

rlm_add_isv_hostid_multiple() returns:

0 if successful
RLM_EH_DUP_ISV_HID if the keyword and/or type has already been used in another ISV-defined hostid
RLM_EH_BADPARAM if the keyword is NULL or its length is > 10 bytes, or if type is <
RLM_ISV_HID_TYPE_MIN

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 99 of 157

rlm_checkin() - Release a license

#include "license.h"
RLM_LICENSE license;

rlm_checkin(license);

rlm_checkin() releases license and frees all data associated with it. After calling rlm_checkin(), the
RLM_LICENSE license is no longer valid, and you should make no further calls using this handle. Do not
call rlm_checkin() more than once on a license.

Note: you cannot call rlm_license_stat() on a license handle after that handle has been checked in, or if the
RLM_HANDLE used to check it out has been closed. In fact, you cannot use this handle in any way. Use
of the handle after an rlm_checkin() or rlm_close() will result in unpredictable behavior (including possible
application crashes), since the handle you are using has been freed by RLM.

Also Note: If you plan to check any licenses in then close the handle (ie, if you are not going to use the
handle after checking a license in), then you should omit the rlm_checkin() call, and simply call rlm_close()
on the handle. rlm_close() always checks-in any licenses which are checked out on the handle, and if you
are using a disconnected handle, RLM will only reconnect to the server one time for all your license
checkins as well as to tell the server that your are done with the handle.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 100 of 157

rlm_checkout() - Request a license from RLM

#include "license.h"
RLM_HANDLE handle;
RLM_LICENSE license;
const char *product;
const char *version;
int count;

license = rlm_checkout(handle, product, version, count);

rlm_checkout requests count licenses of product product at version version. count must be a positive
integer. If there are node-locked, uncounted licenses available in a license file that is specified in The
License Environment, then these node-locked licenses are used. Otherwise, a request is made to each server
specified by The License Environment, until either the licenses are granted, or all servers have been tried
without success. rlm_checkout() creates license and returns it to its caller. The version string should be of
the form major or major.minor where major and minor are integers. The count parameter must be a
positive integer.

The order of license checkout attempts is as follows:

 If RLM_ROAM is set to a positive value, roamed licenses on the local node will be checked first,
 All node-locked, uncounted licenses in local license files (from all license files in the license file
path) will be checked next
 All licenses served by servers that RLM has already connected to are checked next,
 All licenses served by servers which RLM has not previously connected to are checked next,
 Finally, if RLM_ROAM is not set, a check will be made for local roamed licenses.

To get the status of the rlm_checkout call, use rlm_license_stat(license). For a list of status returns, see
Appendix B – RLM Status Values on page 133 .

There are generally 3 "success" status returns from a license checkout request:

 0 - license checked out normally
 RLM_EL_OVERSOFT - license checkout results in usage over the soft_limit specified, or a token-
based license is misconfigured and the server is in an overdraft condition (see note in the token-based
license restrictions section).
 RLM_EL_INQUEUE - license request is in the queue.

If you have specified a minimum server version/revision/build via the rlm_isv_cfg_set_oldest_server() call
in rlm_isv_config.c, and the server is older than your specification, you will get an
RLM_EL_COMM_ERROR error from the server and the handle will have the error status
RLM_EH_SERVER_REJECT.

NOTE: You should always call rlm_checkin() when you are done with the license, even if the checkout
call returns an error. Calling rlm_checkin() on the license frees any associated memory with the license.
You can call rlm_checkin() even if rlm_checkout() returns a NULL license handle, however, you should
only call rlm_checkin() on a non-NULL license handle once.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 101 of 157

rlm_checkout_product() - Request an exact license from RLM

#include "license.h"
RLM_HANDLE handle;
RLM_LICENSE license;
RLM_PRODUCTS product;
const char *version;
int count;

license = rlm_checkout_product(handle, product, version, count);

In most cases, applications use rlm_checkout() to check out licenses, as any license that meets the product
name and version requirements is sufficient. In some other cases, an application may want to choose among
multiple instances of licenses for the same product. For example, if there are several licenses present for a
product but they contain different options attributes, the application may want to check out a specific
instance based on the options content determined with rlm_products(). In that case the application would
use rlm_checkout_product() to check out the license.

rlm_checkout_product() requests count licenses of version version of the product specified by the
RLM_PRODUCTS handle product. count must be a positive integer. rlm_checkout_product() creates
license and returns it to its caller. The version string should be of the form major or major.minor where
major and minor are integers. The count parameter must be a positive integer.

rlm_checkout_product() operates on the RLM_PRODUCTS handle returned from rlm_products(). Once
you have found the product you want to check out via the rlm_product_first() and rlm_product_next() calls,
a call to rlm_checkout_product() will check out the product that is described by the current state of the
RLM_PRODUCTS handle product.

To get the status of the rlm_checkout_product() call, use rlm_license_stat(license). For a list of status
returns, see Appendix B – RLM Status Values on page 133 .

There are generally 3 "success" status returns from a license checkout request:

 0 - license checked out normally
 RLM_EL_OVERSOFT - license checkout results in usage over the soft_limit specified or a token-
based license is misconfigured and the server is in an overdraft condition (see note in the token-based
license restrictions section).
 RLM_EL_INQUEUE - license request is in the queue.

If you have specified a minimum server version/revision/build via the rlm_isv_cfg_set_oldest_server() call
in rlm_isv_config.c, and the server is older than your specification, you will get an
RLM_EL_COMM_ERROR error from the server and the handle will have the error status
RLM_EH_SERVER_REJECT.

NOTE: You should always call rlm_checkin() when you are done with the license, even if the checkout
call returns an error. Calling rlm_checkin() on the license frees any associated memory with the license.
You can call rlm_checkin() even if rlm_checkout() returns a NULL license handle, however, you should
only call rlm_checkin() on a non-NULL license handle once.

Back to Appendix A – RLM Embedded API.

RLM Embedded Reference Manual Page 102 of 157

Table of Contents

RLM Embedded Reference Manual Page 103 of 157

rlm_close() - Terminate licensing operations with RLM

#include "license.h"
RLM_HANDLE handle;

rlm_close(handle);

When you are finished with all licenses and do not intend to make any more calls to RLM, call rlm_close()
to clean up the handle created with rlm_init() and free all the data associated with it.

rlm_close() does the following:

 if you have automatic heartbeats - syncs with the other thread and destroys that thread
 checks in any licenses that are still checked out - which will disconnect from all servers and shut

down the connections (and on windows, calls WSACleanup() to close down Winsock).
 frees all data structures used in that handle.
 frees the handle.

Note: If you are using a DLL on Windows, you cannot call rlm_close() in the DLL unloading routine.

Note: you cannot use any license handles that were created using this RLM_HANDLE after the call to
rlm_close(). Use of the RLM_HANDLE or any associated license handles after an rlm_close() will result in
unpredictable behavior (including possible application crashes), since the handle you are using has been
freed by RLM.

Also Note: If you plan to check any licenses in then close the handle (ie, if you are not going to use the
handle after checking a license in), then you should omit the rlm_checkin() call, and simply call rlm_close()
on the handle. rlm_close() always checks-in any licenses which are checked out on the handle, and if you
are using a disconnected handle, RLM will only reconnect to the server one time for all your license
checkins as well as to tell the server that your are done with the handle.

You are not strictly required to call rlm_close() unless the handle is a disconnected handle. Specifically, if
your program is about to exit, rlm_close() is unnecessary for a connected handle, but for a disconnected
handle, rlm_close() informs the server that you are done and allows the server to clean up data associated
with your process. Of course, you can omit the rlm_close() call even for a disconnected handle, in which
case the server will time out the licenses after your promise interval.

If you do not call rlm_close(), memory leak detectors will report leaked memory. Also note that there are
some idiosyncrasies in the OpenSSL package which can cause memory leaks to be reported. In particular,
if you have a license with a bad signature, OpenSSL allocates several hundred bytes of memory that doesn't
normally get freed. To free it and keep leak detectors quiet, call

ERR_remove_state(0);

just before exiting your program. Do *NOT* call this function if you are going to continue using
RLM in another handle.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 104 of 157

rlm_detached_demo() - Install RLM Detached Demotm license

#include "license.h"
RLM_HANDLE rh;
int stat;
int days;
const char license[RLM_MAX_LINE+1];

rh = rlm_init(...);
stat = rlm_detached_demo(rh, days, license);

rlm_detached_demo() requests RLM to install a Detached Demotm valid for days. The parameters of the
demo license installed are contained in the license string.

days - the number of days the demo license should be valid.
license - an RLM license string.

When installing the demo license, the license string is parsed into it's components and these are used for the
license. The license should not be signed, but must have valid syntax, otherwise an
RLM_EL_BADPARAM error will result. If rlm_detached_demo() returns a non-zero status, the status is
contained in the RLM_HANDLE parameter (rh) after the call.

The count, hostid, and expiration date fields of this input license are unused. The resulting installed demo
license will be a node-locked, uncounted license, valid on the machine which made the call to
rlm_detached_demo(), and valid for the version specified in the license only. The expiration date will be
days days in the future. Note that licenses are valid until midnight, local time, so a 0-day license will be
valid until midnight on the day it is installed.

A Detached Demotm license can only be installed once on a particular system for any given combination of

product and version. Detached Demotm licenses cannot be modified or re-installed. They do not require any
kind of internet connectivity, however, they are not as secure as licenses created with RLM Activation Pro,
which is always the preferred way to install a license which expires in a fixed number of days.

For a Detached Demotm license to be usable, you must be able to check out an rlm_demo license. This
allows you to add the code to create demo licenses into your product, but enable it only in certain
situations. If you call rlm_detached_demo() without an rlm_demo license available, the operation will fail
with an RLM_EH_NO_DEMO_LIC status. Note that the rlm_demo license must be valid, in other words,
you must sign this license and it must be present and valid on the system where the demo is going to be
installed. The rlm_demo license should be placed in the directory with your product binary, and it should
be a nodelocked, uncounted license, perhaps locked to hostid demo or any, e.g.:

LICENSE demo rlm_demo 1.0 permanent uncounted hostid=demo

The following example is a call to rlm_detached_demo() to set up a 30-day license for v1.0 of myproduct:

RLM_HANDLE rh;
int stat;
char license[RLM_MAX_LINE+1];

RLM Embedded Reference Manual Page 105 of 157

javascript:;
javascript:;

rh = rlm_init(...);
sprintf(license, "LICENSE demo mylicense 1.0 permanent uncounted hostid=any _customer=%s",
customer);
stat = rlm_detached_demo(rh, 30, license);

To determine if a license which is checked out is a Detached Demotm license, call

rlm_license_detached_demo() on the license handle. If it is a Detached Demotm license,
rlm_license_detached_demo() will return 1.

Note: Detached Demotm licenses are not as secure as licenses created with RLM Activation Pro. Using

internet activation to install demo licenses is always preferred, and Detached Demotm licenses should only

be used when absolutely required. Also note that Detached Demotm licenses are not reported by the
rlm_products() call.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 106 of 157

rlm_detached_demox() - Remove RLM Detached Demotm license

#include "license.h"
RLM_HANDLE rh;
int stat;
const char product[RLM_MAX_PRODUCT+1];
const char version[RLM_MAX_VER+1];

rh = rlm_init(...);
stat = rlm_detached_demox(rh, product, version);

rlm_detached_demox() requests RLM to remove an installed Detached Demotm license. The license is
specified by the product name and version.

product - the name of the product license to be removed.
version – the version of product to be removed.

Since a Detached Demotm license can only be installed once on a particular system for any given
combination of product and version, rlm_detached_demox() gives you a way to test this functionality
during development.

Note: Reprise Software STRONGLY recommends that you use this
function only during development, and that you do not ship products
that include rlm_detached_demox() calls to your customer.

 Note that rlm_detached_demox() will only remove a Detached Demotm license created by the same
version of RLM.

rlm_detached_demox() first appeared in RLM v9.3.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 107 of 157

javascript:;

rlm_diagnostics() - Print client-side diagnostics

RLM HANDLE rh;
char *filename;

(char *) rlm_diagnostics(rh, filename);

rlm_diagnostics() will print client-side diagnostics to the filename specified. rlm_diagnostics() can be
called any time after a call to rlm_init() or rlm_init_disconn(). The values for the 3 rlm_init() parameters
will be the values used in the most recent call to rlm_init().

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 108 of 157

rlm_errstring() - Format RLM status into a string

#include "license.h"
RLM_HANDLE handle;
RLM_LICENSE lic;
char string[RLM_ERRSTRING_MAX];
int stat;

(char *) rlm_errstring(lic, handle, string);

rlm_errstring() will take the latest status returns from any call in handle and from the latest rlm_checkout()
call in lic, and format the resulting status into string. It is the caller's responsibility to manage the memory
used by string. string should be at least RLM_ERRSTRING_MAX bytes in length. You can pass either a
NULL lic or a NULL handle to rlm_errstring(), and only the status from the other will be returned.

Note: prior to RLM v9.1, rlm_act_errstring() was used to return a printable string corresponding to the
error returned by rlm_activate). Beginning in RLM v9.1, rlm_errstring() prints all RLM errors, including
activation errors. Thus, rlm_act_errstring() is no longer required and should not be used.

rlm_errstring() returns its 3rd argument, so that it can be placed directly in an output (e.g. printf()) call.

If RLM_EXTENDED_ERROR_MESSAGES is set in the user's environment, rlm_errstring() will output
additional information (for certain errors) with suggestions for solving the problem.

The returned string consists of multiple lines of information, in the following format. If any of these errors
are not present, the corresponding line will not appear in the output (e.g., if there is no RLM_HANDLE
error, the 2nd line will not appear):

license (RLM_LICENSE) error string (error number)
handle (RLM_HANDLE) error string (error number)
communications error (comm: error number)
system error string (errno: error number)
Optional extended error messages

For example, if a connection attempt is made to an ISV server that is not running, the following error string
might be returned. Note that this example does not contain an RLM_LICENSE error line:

Networking error (in msg_init()) (-103)
Cannot connect to server (comm: -4)
Transport endpoint is not connected (errno: 146)

If RLM_EXTENDED_ERROR_MESSAGES is set, the following lines would be added to this message:

This error usually means that:
(1) The license server (rlm) is not running, or
(2) The hostname or port # in a port@host or license file is incorrect, or
(3) The ISV server isn't running, or
(4) The license server machine is down.

RLM Embedded Reference Manual Page 109 of 157

Note that for certain activation errors (rlm_activate()) additional status will be contained in the returned
license string. See rlm_activate() for more information.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 110 of 157

rlm_errstring_num() - Translate RLM status value into a string

int error;
char string[RLM_ERRSTRING_MAX];

(char *) rlm_errstring_num(error, string);

rlm_errstring_num() will take any RLM status return and turn it into an error string. The error parameter
can be the return from any RLM call which returns status (primarily rlm_stat() and rlm_license_stat())

It is the caller's responsibility to manage the memory used by string. string should be at least
RLM_ERRSTRING_MAX bytes in length.

rlm_errstring() returns its 3rd argument, so that it can be placed directly in an output (e.g. printf()) call.

RLM_EXTENDED_ERROR_MESSAGES has no effect on the rlm_errstring_num() call.

The returned string consists of a single line of error information.

Example:

char string[RLM_ERRSTRING_MAX];

rlm_errstring_max(-24 /* RLM_EL_TIMEDOUT */, string)

printf(“RLM Error is: %s\n”, string);

The output will be:

 RLM Error is: License timed out by server

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 111 of 157

rlm_get_attr_health() - Check license status by testing server connection

#include "license.h"
RLM_LICENSE license;
int status;

status = rlm_get_attr_health(license);

Once you have checked out a license, you need to periodically check the health of the connection to the
license server by calling rlm_get_attr_health() on a license-by-license basis. You can make this call as
often as you like; RLM ensures that communications with the license server is done at most once every 30
seconds. This communication is called a heartbeat.

In general, it is sufficient to call rlm_get_attr_health() every couple of minutes. If you product runs for less
than a few minutes, you can skip this call entirely. The main function of rlm_get_attr_health() is to protect
against a malicious user killing and restarting the license server in order to make all licenses available
again. If this is not a concern, you can simply never call rlm_get_attr_health() in your application.

Status of 0 indicates that everything is OK, non-zero status returns are defined in license.h

If, after successfully checking out a license, rlm_get_attr_health() returns a non-zero status, you should call
rlm_checkin() on the license to free any associated memory, and then check out the license again.

If you receive a return of RLM_EL_INQUEUE from your checkout call, you would call
rlm_get_attr_health() until you receive a 0 status, at which point the license is checked out. In this case, if
rlm_get_attr_health() returns anything other than 0 or RLM_EL_INQUEUE, this is an error and you
should call rlm_checkin() on that license.

If you would like RLM to provide this checking automatically (in a separate thread), see the Advanced API
Options section for a description of the rlm_auto_hb() function. Note that you should call either
rlm_get_attr_health() or rlm_auto_hb(), but not both.

Some notes on heartbeats and server status checking

Prior to RLM v10.1, when rlm_get_attr_health() detected an error, subsequent calls to
rlm_get_attr_health() would return the same error without re-checking the actual status. Starting in v10.1,
rlm_get_attr_health() will re-attempt to verify the connection to the server each time it is called. This
means a few things:

• the client will be able to “re-acquire” a license that is lost due to a temporary network interruption.
During the time of the interruption, rlm_get_attr_health() will return
RLM_EL_NO_HEARTBEAT. If you are using rlm_auto_hb(), this is attempted 5 times, then the
connection is deemed bad and it is shut down. If you are doing manual heartbeats, you control
how many times you look for a heartbeat before giving up (although Reprise Software
recommends that you keep this number relatively low, say 4-6 attempts).

• In rlm_auto_hb(), your application will not attempt to re-acquire a lost license until it has tried to
verify a heartbeat 5 times. Previously, it attempted a reconnection on the initial detection of the
lost heartbeat.

RLM Embedded Reference Manual Page 112 of 157

• In any case, if the network was interrupted and then restored, it may take more calls to
rlm_get_attr_health() to detect a loss of heartbeat in a subsequent interruption. This is because
several heartbeat responses may have been queued up for the application to read.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 113 of 157

rlm_get_attr_lfpath() - Get license path in use by RLM

#include "license.h"
RLM_LICENSE license;
char *path;

path = rlm_get_attr_lfpath(license);

Once you have attempted a license checkout, you can determine the license path in use by RLM by calling
rlm_get_attr_lfpath() on the license handle (note: the checkout does not need to be successful for
rlm_get_attr_lfpath() to work). This call will retrieve the same path for any license handle passed in.

You should NOT free the returned string.

Note: on Windows, the path components are separated by the ';' character. On all other RLM platforms, the
path components are separated by the ':' character.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 114 of 157

rlm_get_rehost() - Retrieve the hostid of a rehostable license.

#include "license.h"
RLM_HANDLE handle;
char *product;
char *hostid[RLM_MAX_HOSTID_STRING+1];
int status;

status = rlm_get_rehost(handle, product, hostid);

rlm_get_rehost() will return the hostid for the specified product if there is a rehostable hostid on
this system. If status==0, hostid will contain the hostid string for this product.

This call can be used to retrieve a rehostable hostid when the license file is lost, and then transmit
this hostid to the activation server to retrieve the hostid.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 115 of 157

rlm_hostid(), rlm_all_hostids(), rlm_all_hostids_free() - retrieve the hostid
of this machine.

rlm_hostid()

#include "license.h"
RLM_HANDLE handle;
int type;
char hostid[RLM_MAX_HOSTID_STRING];
const char *description;

description = rlm_hostid(handle, type, hostid);

Call rlm_hostid() on any open RLM_HANDLE to retrieve the hostid of type type. The hostid will be
returned in the string hostid.

The value of type should be one of:

RLM_HOSTID_32BIT
RLM_HOSTID_DISKSN (Windows only)
RLM_HOSTID_ETHER
RLM_HOSTID_USER
RLM_HOSTID_HOST
RLM_HOSTID_IP
RLM_HOSTID_RLMID1

or one of your ISV-defined hostid types.

Note: type could also be one of RLM_HOSTID_ANY, RLM_HOSTID_DEMO, or
RLM_HOSTID_STRING, but these will always return "ANY", "DEMO", or "".

The description return value will be NULL for an error, otherwise it is a static string - do not free it.
Currently it is always an empty string, but may be used in the future.

Note: You cannot retrieve a rehostable hostid with rlm_hostid() or rlm_all_hostids(). Call
rlm_get_rehost() to retrieve a rehostable hostid for a product.

rlm_all_hostids()

The rlm_all_hostids() call returns a list of hostids for hostid types which allow for multiple instances on a
given machine.

RLM_HANDLE handle;
int type;
char **list;

RLM Embedded Reference Manual Page 116 of 157

list = rlm_all_hostids(handle, type);

rlm_all_hostids() returns a pointer to an array of (char *) pointers. Each pointer points to a string which is
one instance of the specified hostid type. The list is terminated with a NULL pointer.

rlm_all_hostids_free()

Free all memory allocated for the list with the rlm_all_hostids_free() call.

char **list;
(void) rlm_all_hostids_free(list);

Example:

char **list, **list_save;

 list_save = list = rlm_all_hostids(handle, RLM_HOSTID_ETHER);
 while (list && *list)
 {
 printf("Hostid: %s\n", *list);
 list++;
 }
 rlm_all_hostids_free(list_save);

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 117 of 157

rlm_init() - Initialize licensing operations with RLM

#include "license.h"
RLM_HANDLE handle;
const char *license;
const char *argv0;
const char *license_strings;
int promise;

handle = rlm_init(license, argv0, license_strings);

Before any RLM operations can be done, you must call either rlm_init or rlm_init_disconn to obtain an
RLM_HANDLE. This handle is then passed to the rlm_checkout(), rlm_stat(), rlm_errstring(), and
rlm_close() calls.

The first parameter is the license file (or directory) you would like to use. If you allow the license
administrator to specify the license file, put the path to this license file here. If you do not allow
specification of the license file, Reprise Software recommends searching the current directory - you do this
by passing a string with a single dot (".") as the first parameter. This first parameter can be a list, starting in
RLM v11.1, however it must be a single file or directory prior to v11.1 This parameter can also be a
port@host specification. Beginning in RLM v11.0, this string must have a length <= RLM_MAX_PATH
bytes (1024 on Unix, 2048 on windows), otherwise an RLM_EH_BADPARAM error will be returned by
rlm_init().

The second parameter should be your argv[0] invocation argument. This will cause RLM to look in the
directory where your binary resides to find license files. If you do not have access to argv[0], pass a NULL
or empty string as the second parameter. Using anything other than an empty/NULL string or argv[0] will
result in unpredictable behavior. Beginning in RLM v11.0, this string must have a length <=
RLM_MAX_PATH bytes (1024 on Unix, 2048 on windows), otherwise an RLM_EH_BADPARAM error
will be returned by rlm_init().

The third parameter is used to pass licenses into RLM directly. This can be one license, or a list of
licenses separated by the path separator (':' on Unix, ';' on Windows). Each license must be enclosed within
angle brackets ('<' and '>'). This would be used, for example, when you are licensing a library and you want
to give your customer a license to use the library yet you do not want to require that they use a separate
license file. In this case, they would compile the license into the code and you would pass it into rlm_init()
in this parameter. Do not include HOST or ISV lines in this license, only the LICENSE line. Note that
these licenses must be node-locked, uncounted (or SINGLE) licenses.

NOTE: On Windows platforms except for x86_w1, if the paths your application would pass to
rlm_init() in the first and second parameters are Unicode wide characters (wchar_t or
WCHAR), you must first convert them to UTF-8. The Win32 function WideCharToMultiByte()
can be used for this conversion.

For example, to pass 2 licenses into rlm using the rlm_init() call, pass a string similar to following as the
third parameter to rlm_init() (note – you must include the entire signed license within the angle brackets):

<LICENSE isv lic1 1.0 permanent 0 key hostid=xxx .sig=yyy ..>:<LICENSE isvname lic2 1.0 permanent 0 key
hostid=xxx sig=yyy ...>

Note that RLM uses environment variables for a number of user-selectable options, such as queuing
(RLM_QUEUE), license roaming (RLM_ROAM), project identification (RLM_PROJECT), etc. It is

RLM Embedded Reference Manual Page 118 of 157

possible for you as an ISV to set these environment variables within your application, but if you wish to do
this, you should do it before you call rlm_init(), because the environment is read and initialized at the time
rlm_init() is called.

Retrieve the status of the rlm_init() call by calling rlm_stat(handle) and providing the handle returned by
rlm_init(): For a list of status returns, see Appendix A - RLM Status Returns on page 133.

int status;
status = rlm_stat(handle);

rlm_init() will set up a list of licenses, port@host specifications and license files in the RLM handle. This
order will determine the order in which license checkouts will be attempted. The order will be randomized
if the user has set the RLM_PATH_RANDOMIZE environment variable to any value. The default order is:

 the contents of the ISV_LICENSE (if present) or RLM_LICENSE environment (note that if using
ISV_LICENSE, the ISV part of the name must be in the same case as was entered in
rlm_isv_config.c – generally lower case. “LICENSE” must be uppercase).

 the license specifications in the first parameter (license) in the rlm_init() call.
 the license files contained in the directory (argv0) in the second parameter in the rlm_init() call
 any licenses passed as strings in the third parameter (license_strings) in the rlm_init() call.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 119 of 157

rlm_license_XXXX() - Get checked-out license information.

This is a family of functions that operate on a valid license handle. These functions return status and
attributes of a checked-out license. Note that in the case of token-based licenses, these data will be
attributes of the license which actually satisfied the request, rather than attributes of the token-based license
itself. These functions are divided into policy functions, which you should use to affect license policy, and
display functions, which you should use only to display license data to your user.

WARNING: Other than the policy functions, be very careful using these functions. The display
functions are intended for the application to use to determine the details of the license checked
out, for the purposes of display to the user. Use of these functions to affect the behavior of the
application based on the contents of the optional fields in the license is annoying and frustrating to
license administrators. This is because doing so makes application behavior mysterious to them,
and non-standard across all their licensed applications. For example, using
rlm_license_customer() to display the name of the customer is reasonable. Making runtime
decisions about application behavior or capability based on the data returned from
rlm_license_customer() makes the application behavior different from other licensed applications
and risks customer dissatisfaction. This violates the RLM design philosophy of "policy in the
license", and is historically a sore point with license administrators of license management
systems. Reprise Software urges you to take heed.

All functions operate on an RLM_LICENSE. Definitions for all functions are:

#include "license.h"
RLM_LICENSE license;

Note: On all of the following functions that return strings, if there is no valid checked-out license or the
license handle is invalid, the function returns a NULL pointer. For functions that return int, a return value
of RLM_EL_NOHANDLE indicates that a null or invalid handle was passed to the function.

The functions are:

Policy Functions

rlm_license_akey() - Retrieve activation key used to create license

char *akey = rlm_license_akey(license);
Note: The akey field is only used by RLM to control license pooling in the server.

rlm_license_count() - Retrieve requested license count

int count = rlm_license_count(license);
Note: The count is the count you requested in checkout.

 rlm_license_stat() - Retrieve license status

RLM Embedded Reference Manual Page 120 of 157

int status;
status = rlm_license_stat(license);

You can retrieve the status of an rlm_checkout() call by calling rlm_license_stat(license).
license is the license handle returned by rlm_checkout(). This call does not query the
license server for the status, it merely returns the status stored the last time the server was
contacted. You can call this as often as you like. For a list of status returns, see Appendix
B – RLM Status Values on page 133. This call, and rlm_license_goodonce() are the only
calls in the family of rlm_license_xxxx() functions which you should use to affect
application behavior.

Note: you cannot call rlm_license_stat() on a license handle after that handle has been
checked in, or if the RLM_HANDLE used to check it out has been closed. This will
result in unpredictable behavior (including possible application crashes), since the handle
you are using has been freed by RLM. :q

 rlm_license_goodonce() - Was checkout ever successful on this handle

int status;
status = rlm_license_goodonce(license);

You can determine whether a checkout was ever successful on a particular license handle
by calling rlm_license_goodonce(license). If status is 0, the checkout was never
successful. If non-zero, the checkout succeeded at one time (although the license may no
longer be valid). Note that a license status of RLM_EL_OVERSOFT will be considered
to be a good checkout, but RLM_EL_INQUEUE is not. RLM_EL_OVERSOFT is an
error if you have a misconfigured token-based license (see the note in the token-based
license restrictions section).

 rlm_license_options() - Retrieve license options

char *options = rlm_license_options(license);

The meaning of the options string is completely determined by an individual ISV. This
string is intended to encode product options for this license.

Display Functions

 rlm_license_contract() - Retrieve license contract string

char *contract = rlm_license_contract(license);
Note: This license field is unused by RLM.

 rlm_license_customer() - Retrieve license customer string

RLM Embedded Reference Manual Page 121 of 157

char *customer = rlm_license_customer(license);
Note: This license field is unused by RLM.

 rlm_license_detached_demo() - Retrieve ”detached demo” status of license.

int detached = rlm_license_detached_demo(license);

If this is a Detached Demotm license, the return is 1, otherwise 0.

 rlm_license_exp() - Retrieve license expiration date

char *exp = rlm_license_exp(license);
Note: For licenses checked-out from a license server, the expiration date returned by the
server is the first (earliest) expiration date from all the licenses which make up the license
pool used to satisfy this request. In other words, there may be other licenses for this same
product which expire later than this date.

 rlm_license_exp_days() - Retrieve the # of days until license expiration

int days = rlm_license_exp_days(license);

Note: For licenses checked-out from a license server, the number of days to
expiration is based on the first (earliest) expiration date from all the licenses which
make up the license pool used to satisfy this request. In other words, there may be other
licenses for this same product which expire later than this date.

Also Note: rlm_license_exp_days() counts today as a day. So, for example, a license
which expires tomorrow at midnight will be reported as expiring in 2 days. A license
which expires today at midnight will be reported as expiring in 1 day.

If days == 0, this is a permanent license. If days is < 0, there was an error.

 rlm_license_hostid() - Retrieve license hostid

char *hostid = rlm_license_hostid(license);.

 rlm_license_issued() - Retrieve license issued date

char *issued = rlm_license_issued(license);

(Note: this value is only correct for licenses which aren't served. Any license coming
from a license server has an undefined rlm_license_issued() value.)

 rlm_license_issuer() - Retrieve license issuer string

RLM Embedded Reference Manual Page 122 of 157

char *issuer = rlm_license_issuer(license);
Note: This license field is unused by RLM.

 rlm_license_line_item() - Retrieve license line_item string

char *line_item = rlm_license_line_item(license);
Note: This license field is unused by RLM.

 rlm_license_platforms() - Retrieve licensed platforms
char *platforms= rlm_license_platforms(license);

 rlm_license_product() - Retrieve licensed product

char *product = rlm_license_product(license);
Note that rlm_license_product() retrieves the product name which satisfied the request.
This may be different than the product requested. In the case of token-based licenses, the
license requested is not the product that satisfies the license request. The actual product
which satisfied the request is returned by rlm_license_product(). Also note that only the
attributes of the first license (in the case of a compound token-based license) is returned
by these calls. The first license is the first license listed in the token definition.

 rlm_license_single() - Is license a “single” type
int single = rlm_license_single(license);

Returns 1 if the license is “single”, 0 otherwise.

 rlm_license_start() - Retrieve license start date

char *start= rlm_license_start(license);

 rlm_license_type() - Retrieve license type

int type = rlm_license_type(license);
The type variable has bits set for the specified license types, as defined in license.h:

RLM_LA_BETA_TYPE - "beta" specified in license type keyword
RLM_LA_EVAL_TYPE - "eval" specified in license type keyword
RLM_LA_DEMO_TYPE - "demo" specified in license type keyword
Note: This license field is unused by RLM.

 rlm_license_tz() - Retrieve license timezone spec

int tz = rlm_license_tz(license);

RLM Embedded Reference Manual Page 123 of 157

 rlm_license_uncounted() - Is license uncounted
int uncounted = rlm_license_uncounted(license);

Returns 1 if the license is uncounted, 0 otherwise.

 rlm_license_ver() - Retrieve license version

char *ver= rlm_license_ver(license);
Note that rlm_license_ver() returns the actual version of the license that was used to
satisfy the request. This may be different than the version requested.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 124 of 157

rlm_products() - Generate list of products that can be checked out

#include "license.h"
RLM_PRODUCTS products;
RLM_HANDLE handle;
char *product;
char *ver;
int status;

products = rlm_products(handle, product, ver);
(void) rlm_product_first(products);
status = rlm_product_next(products);

NOTE: rlm_products() is an expensive call. If you don't absolutely need it, don't call it. If you do call
it, specify a product name if you can. You should avoid calling it more than once inside an
application. Why is it expensive? If called with empty product/version strings, it has to validate the
license keys for all node-locked uncounted/single-use licenses in local license files.

rlm_products generates a list of products of the specified version that can be checked out. If product is an
empty or NULL string, all products are checked. If ver is empty or NULL, any version will be listed. If
rlm_products() returns a non-null pointer, then there are products in the list. The status return from
rlm_product_next() is 0 if there is another product in the list, or -1 if the list is exhausted. rlm_products()

does not report on Detached Demotm licenses.

To examine the list of products, first call rlm_products() to retrieve the products pointer. Next, use
rlm_product_first() and rlm_product_next() to walk the list of products returned. At any point after calling
rlm_product_first(), you can call the appropriate function below. Note: you should not free any data
returned by any of these calls.

Prior to RLM v4.0BL2, rlm_products() returned the license information in the same order that the license
files were present in the license file path. However, starting in RLM v4.0BL2, rlm_products() returns the
licenses in the same order that rlm_checkout() will attempt checkouts. This order is:

 If RLM_ROAM is set to a positive value, roamed licenses on the local node first,
 All node-locked, uncounted licenses in local license files (from all license files in the license file
path) will be next
 All licenses served by servers are next,
 Finally, if RLM_ROAM is not set, the local roamed licenses will be last.

Note that rlm_products() returns the list of valid roamed products on the local node, whether or not it can
check out an rlm_roam license.

Note that rlm_checkout() first processes licenses from connected servers, then it attempts checkouts from
servers that are not connected. However, rlm_products() will connect to all servers and get the lists from
each of them. It will then close connections to all servers that have no active licenses checked out. If your
software depends on the order of the licenses on license servers as returned from rlm_products() [NOTE:
Reprise Software does not recommend this], then you should call rlm_set_attr_keep_conn(handle, 1)
before calling rlm_products(), so that rlm_products() will not close any connections that it makes.

char *rlm_product_name(products) - returns the product name.

RLM Embedded Reference Manual Page 125 of 157

char *rlm_product_ver(products) - returns the product version.
char *rlm_product_exp(products) - returns the expiration date. If this product represents a pool in a license
server, the expiration date will be the earliest expiration of any of the licenses which were combined to
create the pool.

int rlm_product_exp_days(products) - returns the number of days until expiration. Note that “0” indicates
a permanent license; a license which expires today has a value of 1. If this product represents a pool in a
license server, the expiration date will be the earliest expiration of any of the licenses which were
combined to create the pool. rlm_product_exp_days() is new in RLM v10.0.

char *rlm_product_akey(products) - returns the akey= attribute. New in v11.0.
char *rlm_product_customer(products) - returns the customer attribute. New in v10.0.
char *rlm_product_contract(products) - returns the contract attribute. New in v10.0.
int rlm_product_count(products) - returns the license count.
char *rlm_product_issuer(products) - returns the issuer attribute. New in v10.0.
char *rlm_product_options(products) - returns the product options.
int rlm_product_tz(products) - returns the license timezone specification.
int rlm_product_type(products) - returns the license type (TYPE= parameter).
(Note: the license type flags (RLM_LA__xxx_TYPE) are defined in license.h)

Note: the list of products may contain products that cannot be checked out at any given time, in the case of
a SINGLE license that is in use.. It is possible (at some time) to check out every product in the list,
however. In other words, the list contains only licenses for which the license key is good, the time is past
the start date and before the expiration date, the timezone is correct, and we are on the correct host.

Also note that the following licenses will never be returned by rlm_products():

• Detached Demotm licenses

• licenses passed in the 3rd parameter to rlm_init()

The data returned by the rlm_products() call is dynamically allocated. Call
rlm_products_free(products) to free this memory when you are finished with it, in order to avoid
memory leaks in your program. You should only call rlm_products_free() once on the data
returned by rlm_products(), and only when you are finished accessing this data.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 126 of 157

rlm_putenv() - Set environment variable within the application

#include "license.h"
RLM_HANDLE rh;
int status;
const char *nvp;

status = rlm_putenv(const char *nvp);

rlm_putenv() sets the specified name in to the specified value in the process's environment. The return of
rlm_putenv() is the return of the system putenv() call.

Example:

const char *nvp = “RLM_ROAM=10”;
rlm_putenv(nvp);

In this example, the environment value of RLM_ROAM is set to 10.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 127 of 157

rlm_set_environ() - Set user/host/ISV-defined values for RLM

#include "license.h"
RLM_HANDLE rh;
char user[RLM_MAX_USERNAME+1];
char host[RLM_MAX_HOSTNAME+1];
char isv[RLM_MAX_ISVDEF+1];

rlm_set_environ(handle, user, host, isv);

License sharing operates by comparing user, host, and ISV fields for matches. rlm_set_environ() allows the
ISV to override the system's notion of user and/or host, and also provides a way to set the ISV-defined data.
If any of user/host/isv are passed in as NULL, the corresponding field remains unchanged.

The ISV field should be a printable string which does not contain the double-quote character (").

Note that rlm_set_environ() should be called after rlm_init() and before any rlm_checkout() call to which it
should apply. Once rlm_checkout() is called, these values will persist for the life of the RLM_HANDLE in
which you call rlm_set_environ().

Starting in RLM v9.1, you can call rlm_set_environ() after the first rlm_checkout() call, and the new user,
host, and ISV-defined parameters will apply to the new checkout. The original settings will continue to
apply to rlm_products() calls, however.

Note that RLM always treats usernames and hostnames as case-insensitive.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 128 of 157

rlm_set_attr_reference_hostid() - Set reference hostid for actpro

#include "license.h"
RLM_HANDLE rh;
char *reference_hostid;

(void) rlm_set_attr_reference_hostid(handle, reference_hostid);

Beginning in RLM v12.3, you can set the hostid which RLM uses as a reference hostid when creating a
rehostable hostid. It is important that the hostid you set is a valid RLM hostid which is valid on the current
host, otherwise your rehostable hostid will not work and will always return RLM_EL_NOTTHISHOST.

You can call rlm_set_attr_reference_hostid() any time before an rlm_act_request(), rlm_activate() or
rlm_act_revoke_reference() call.

If you set the reference hostid when creating a rehostable hostid, you must set the same hostid before
calling rlm_act_revoke_reference(), otherwise the rehostable hostid will not be revoked.

The hostid string you pass to this function must be <= RLM_MAX_HOSTID_STRING characters long,
and must be a valid hostid on the current host.

Note that RLM selects a reference hostid automatically, and you should never need to make this call.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 129 of 157

rlm_set_attr_req_opt() - Set required substring in license options

#include "license.h"
RLM_HANDLE rh;
char *opts;

rlm_set_attr_req_opt(handle, opts);

Beginning in RLM v12.0, you can request that any license must contain a certain substring in the
“options=” field.

You can call rlm_set_attr_req_opt() any time before an rlm_checkout() or rlm_products() call, and the
value of the option substring can be changed for subsequent requests. Note that if you set opts to an empty
string (“”), no checking of the license options will be done by rlm_checkout() or rlm_products().

The opts parameter must be a substring in the license options, and the comparison is CASE SENSITIVE.

Note: once you call rlm_set_attr_req_opt(), you will only see licenses with the specified substring in
the options field in either the rlm_checkout() or rlm_products() calls. If you want to see other licenses,
call rlm_set_attr_req_opt() with an empty string.

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 130 of 157

rlm_sign_license() - Sign an individual license in-memory

#include "license.h"
RLM_HANDLE rh;
int encode_bits;
char *hostid;
char license[RLM_MAX_LINE+1];

status = rlm_sign_license(rh, encode_bits, hostid, license);

rlm_sign_license runs the internal signature algorithm to compute the license key for the license string
found in license.

rlm_sign_license() should be called with a valid RLM_HANDLE as its first parameter.

The 2nd parameter - encode_bits - indicates the key encoding desired. Valid values are:

 4 - encode license key 4 bits/character - this produces HEX numbers
 5 - encode license key 5 bits/character - this produces all UPPERCASE license keys
 6 - encode license key 6 bits/character - this produces license keys in mixed-case
If you specify a value that is < 4 or > 6, 4 bits/character will be used.

The 3rd parameter - hostid - is the hostid of the license server, if this is a floating license. You should pass
an empty or NULL string if this is a node-locked license.

The 4th parameter - license - should contain a valid RLM license, with the signature replaced with the
string "sig". On successful completion, the "sig" string will be replaced with the correct license signature in
this string. Note that this string should contain only the (single) LICENSE line, not the HOST and ISV
lines.

A successful call to rlm_sign_license() will return a 0 status. Any other status return indicates an error, and
the license will not be valid.

Example – sign a nodelocked license:

#include "license.h"
RLM_HANDLE rh;
char license[RLM_MAX_LINE+1];

rh = rlm_init((char *)NULL, (char *)NULL, (char *)NULL);
if (!rh)

-error-
else
{
 (void) strcpy(license,

“LICENSE demo rlmclient 1.0 12-apr-2019 uncounted hostid=ANY options=xyz sig”);

 status = rlm_sign_license(rh, 6, (char *) NULL, license);
}

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 131 of 157

rlm_stat() - Retrieve RLM_HANDLE status

#include "license.h"
RLM_HANDLE handle;
int status;

status = rlm_stat(handle);

rlm_stat() retrieves the status of the handle created with the rlm_init() call. For a list of status returns, see
Appendix B – RLM Status Values on page 133 .

Back to Appendix A – RLM Embedded API.

Table of Contents

RLM Embedded Reference Manual Page 132 of 157

Appendix B – RLM Status Values

The API functions return status (via the rlm_stat() and rlm_license_stat() (see rlm_license_XXXX()) calls

Note that this is a complete list of all RLM errors. RLM Embedded programs will not generate many of
these errors, since many errors listed here relate to the license server.

rlm_stat() returns general RLM_HANDLE errors. These are:

0 0 Success

RLM_EH_NOHANDLE -101 No handle supplied to call

RLM_EH_READ_NOLICENSE -102 Can't read license data

RLM_EH_NET_INIT -103 Network (msg_init()) error

RLM_EH_NET_WERR -104 Error writing to network

RLM_EH_NET_RERR -105 Error reading from network

RLM_EH_NET_BADRESP -106 Unexpected response

RLM_EH_BADHELLO -107 HELLO message for wrong server

RLM_EH_BADPRIVKEY -108 Error in private key

RLM_EH_SIGERROR -109 Error signing authorization

RLM_EH_INTERNAL -110 Internal error

RLM_EH_CONN_REFUSED -111
Connection refused at server (this can also happen if

you have a bad TCP/IP address in your local database)

RLM_EH_NOSERVER -112 No server to connect to

RLM_EH_BADHANDSHAKE -113 Bad communications handshake

RLM_EH_CANTGETETHER -114 Can't get ethernet address

RLM_EH_MALLOC -115 malloc() error

RLM_EH_BIND -116 bind() error

RLM_EH_SOCKET -117 socket() error

RLM_EH_BADPUBKEY -118 Error in public key

RLM_EH_AUTHFAIL -119 Authentication failed

RLM_EH_WRITE_LF -120 Can't write new license file

RLM_EH_DUP_ISV_HID -122 ISV-defined hostid already registered

RLM_EH_BADPARAM -123 Bad parameter passed to RLM function

RLM_EH_ROAMWRITEERR -124 Roam File write error

RLM_EH_ROAMREADERR -125 Roam File read error

RLM_EH_HANDLER_INSTALLED -126 Heartbeat handler already installed

RLM_EH_CANTCREATELOCK -127 Can't create 'single' lockfile

RLM_EH_CANTOPENLOCK -128 Can't open 'single' lockfile

RLM_EH_CANTSETLOCK -129 Can't set lock for 'single'

RLM_EH_BADRLMLIC -130 Bad/missing/expired RLM license

RLM_EH_BADHOST -131 bad hostname in license file or port@host

RLM_EH_CANTCONNECTURL -132 Can't connect to specified URL (activation)

RLM Embedded Reference Manual Page 133 of 157

RLM_EH_OP_NOT_ALLOWED -133
Operation not allowed on server. The status, reread,

shutdown, or remove command has been disabled for
this user.

RLM_EH_ACT_BADSTAT -134 Bad status return from Activation server

RLM_EH_ACT_BADLICKEY -135 Activation server built with incorrect license key

RLM_EH_ACT_BAD_HTTP -136 Error in HTTP transaction with Activation server

RLM_EH_DEMO_EXISTS -137 Demo already created on this system

RLM_EH_DEMO_WRITEERR -138 Demo install file write error

RLM_EH_NO_DEMO_LIC -139 No "rlm_demo" license available

RLM_EH_NO_RLM_PLATFORM -140 RLM is unlicensed on this platform

RLM_EH_EVAL_EXPIRED -141
The RLM evaluation license compiled into this binary

has expired

RLM_EH_SERVER_REJECT -142 Server rejected (too old)

RLM_EH_UNLICENSED -143 Unlicensed RLM option

RLM_EH_SEMAPHORE_FAILURE -144 Seamphore initialization failure

RLM_EH_ACT_OLDSERVER -145 Activation server too old (doesn't support encryption)

RLM_EH_BAD_LIC_LINE -146 Invalid license line in LF

RLM_EH_BAD_SERVER_HOSTID -147 Invalid hostid on SERVER line

RLM_EH_NO_REHOST_TOP_DIR -148 No rehostable hostid top-level dir

RLM_EH_CANT_GET_REHOST -149 Cannot get rehostable hostid

RLM_EH_CANT_DEL_REHOST -150 Cannot delete rehostable hostid

RLM_EH_CANT_CREATE_REHOST -151 Cannot create rehostable hostid

RLM_EH_REHOST_TOP_DIR_EXISTS -152 Rehostable top directory exists

RLM_EH_REHOST_EXISTS -153 Rehostable hostid exists

RLM_EH_NO_FULFILLMENTS -154 No fulfillments to revoke

RLM_EH_METER_READERR -155 Meter read error

RLM_EH_METER_WRITEERR -156 Meter write error

RLM_EH_METER_BADINCREMENT -157 Bad meter increment command

RLM_EH_METER_NO_COUNTER -158 Can't find counter in meter

RLM_EH_ACT_UNLICENSED -159 Activation Unlicensed

RLM_EH_ACTPRO_UNLICENSED -160 Activation Pro Unlicensed

RLM_EH_SERVER_REQUIRED -161 Counted license requires server

RLM_EH_DATE_REQUIRED -162 REPLACE license requires date

RLM_EH_NO_METER_UPGRADE -163 METERED licenses can't be UPGRADED

RLM_EH_NO_CLIENT -164 Disconnected client data can't be found

RLM_EH_NO_DISCONN -165 Operation not allowed on disconnected handle

RLM_EH_NO_FILES -166 Too many open files

RLM_EH_NO_BROADCAST_RESP -167 No response to broadcast message

RLM_EH_NO_BROADCAST_HOST -168 Broadcast response didn't include hostname

RLM_EH_SERVER_TOO_OLD -169 Server too old for disconnected operations

In addition, rlm_activate() will return the following errors:I

RLM Embedded Reference Manual Page 134 of 157

RLM_ACT_BADPARAM -1001 Unused – RLM_EH_BADPARAM returned instead.

RLM_ACT_NO_KEY -1002 No activation key supplied

RLM_ACT_NO_PROD -1003 No product definition exists

RLM_ACT_CANT_WRITE_KEYS -1004 Can't write keyf table

RLM_ACT_KEY_USED -1005 Activation key already used

RLM_ACT_BAD_HOSTID -1006 Missing hostid

RLM_ACT_BAD_HOSTID_TYPE -1007 Invalid hostid type

RLM_ACT_BAD_HTTP -1008 Bad HTTP transaction. Note: unused after v3.0BL4

RLM_ACT_CANTLOCK -1009 Can't lock activation database

RLM_ACT_CANTREAD_DB -1010 Can't read activation database

RLM_ACT_CANT_WRITE_FUFILL -1011 Can't write licf table

RLM_ACT_CLIENT_TIME_BAD -1012 Clock bad on client system (not within 7 days of server)

RLM_ACT_BAD_REDIRECT -1013 Can't write licf table

RLM_ACT_TOOMANY_HOSTID_CH
ANGES

-1014 Too many hostid changes for refresh-type activation

RLM_ACT_BLACKLISTED -1015 Domain on blacklist for activation

RLM_ACT_NOT_WHITELISTED -1016 Domain not on activation key whitelist

RLM_ACT_KEY_EXPIRED -1017 Activation key expired

RLM_ACT_NO_PERMISSION -1018 HTTP request denied (this is a setup problem)

RLM_ACT_SERVER_ERROR -1019 HTTP internal server error (usually a setup problem)

RLM_ACT_BAD_GENERATOR -1020 Bad/missing generator file (Activation Pro)

RLM_ACT_NO_KEY_MATCH -1021 No matching activation key in database

RLM_ACT_NO_AUTH_SUPPLIED -1022 No proxy authorization supplied

RLM_ACT_PROXY_AUTH_FAILED -1023 Proxy authentication failed

RLM_ACT_NO_BASIC_AUTH -1024 No basic authentication supported by proxy

RLM_ACT_GEN_UNLICENSED -1025 Activation generator unlicensed (ISV_mklic)

RL_ACT_DB_READERR -1026 Activation database read error (Activation Pro)

RLM_ACT_GEN_PARAM_ERR -1027 Generating license - bad parameter

RLM_ACT_UNSUPPORTED_CMD -1028 Unsupported command to license generator

rlm_license_stat() returns RLM_LICENSE errors and status. These are:

Status Value Meaning Full Description

0 0 Success

RLM_EL_NOPRODUCT -1
No authorization

for product
rlm_checkout() did not find a product to satisfy

your request.

RLM_EL_NOTME -2
Authorization is
for another ISV

The license you are requesting is in the license
file, but it is for a different ISV.

RLM Embedded Reference Manual Page 135 of 157

RLM_EL_EXPIRED -3
Authorization has

expired

The only license available has expired. This
error will only be returned for local license lines,

never from a license server.

RLM_EL_NOTTHISHOST -4
Wrong host for
authorization

The hostid in the license doesn't match the hostid
of the machine where the software is running.

RLM_EL_BADKEY -5
Bad key in

authorization

The signature in the license line is not valid, i.e.
it does not match the remainder of the data in the

license.

RLM_EL_BADVER -6
Requested version

not supported

Your application tried to check out a license at a
higher version than was available, e.g., you

specified v5, but the available license is for v4.

RLM_EL_BADDATE -7
bad date format -
not permanent or

dd-mm-yy

The expiration, start, or issued date wasn't
understood, eg, 316-mar-2010 or 31-jun-2010.

You'd probably never see this in the field unless
somebody had tampered with the license file.

RLM_EL_TOOMANY -8
checkout request

for too many
licenses

Your checkout request will never work, because
you have asked for more licenses than are

issued.

RLM_EL_NOAUTH -9
No license auth
supplied to call

This is an internal error.

RLM_EL_ON_EXC_ALL -10 On excludeall list
The license administrator has specified an

EXCLUDEALL list for this product, and the
user (host, etc) is on it.

RLM_EL_ON_EXC -11
On feature
exclude list

The license administrator has specified an
EXCLUDE list for this product, and the user

(host, etc) is on it.

RLM_EL_NOT_INC_ALL -12
Not on the

includeall list

The license administrator has specified an
INCLUDEALL list for this product, and you are

not on it.

RLM_EL_NOT_INC -13
Not on the feature

include list

The license administrator has specified an
INCLUDE list for this product, and you are not

on it.

RLM_EL_OVER_MAX -14
Request would go
over license MAX

The license administrator set a license MAX
usage option for a user or group. This checkout
request would put this user/group/host over that

limit.

RLM_EL_REMOVED -15
License

(rlm)removed by
server

A license administrator removed this license
using the rlmremove command or the RLM web

interface.

RLM_EL_SERVER_BADRESP -16
Unexpected

response from
server

The application received a response from the
license server which it did not expect. This is an

internal error.

RLM_EL_COMM_ERROR -17
Error

communicating
with server

This indicates a basic communication error with
the license server, either in a network

initilization, read, or write call.

RLM_EL_NO_SERV_SUPP -18
License server
doesn't support

this
RLM_EL_NOHANDLE -19 No license handle No license handle supplied to an

RLM Embedded Reference Manual Page 136 of 157

rlm_get_attr_xxx() call or rlm_license_xxx()
call.

RLM_EL_SERVER_DOWN
-20 Server closed

connection
The license server closed the connection to the

application.

RLM_EL_NO_HEARTBEAT -21
No heartbeat

response received

Your application did not receive a response to a
heartbeat message which it sent. This would

happen when you call rlm_get_attr_health(), or
automatically if you called rlm_auto_hb().

RLM_EL_ALLINUSE -22 All licenses in use

All licenses are currently in use, and the user did
not request to be queued. This request will

succeed at some other time when some licenses
are checked in.

RLM_EL_NOHOSTID -23
No hostid on

uncounted license
Uncounted licenses always require a hostid.

RLM_EL_TIMEDOUT -24
License timed out

by server

Your application did not send any heartbeats to
the license server and the license administrator
specified a TIMEOUT option in the ISV server

options file.

RLM_EL_INQUEUE -25
In queue for

license

All licenses are in use, and the user requested
queueing by setting the RLM_QUEUE

environment variable.

RLM_EL_SYNTAX -26
License syntax

error
This is an internal error.

RLM_EL_ROAM_TOOLONG -27
Roam time

exceeds maximum

The roam time specified in a checkout request is
longer than either the license-specified
maximum roaming time or the license

administrator's ROAM_MAX_DAYS option
specification.

RLM_EL_NO_SERV_HANDLE -28
Server does not

know this license
handle

This is an internal server error. It will be
returned usually when you are attempting to

return a roaming license early.

RLM_EL_ON_EXC_ROAM -29
On roam exclude

list

The license administrator has specified an
EXCLUDE_ROAM list for this product, and the

user (host, etc) is on it.

RLM_EL_NOT_INC_ROAM -30
Not on the roam

include list

The license administrator has specified an
INCLUDE_ROAM list for this product, and you

are not on it.

RLM_EL_TOOMANY_ROAMING -31
Too many

licenses roaming
already

A request was made to roam a license, but there
are too many licenses roaming already (set by

the license administrator
ROAM_MAX_COUNT option).

RLM_EL_WILL_EXPIRE -32
License expires

before roam
period ends

A roaming license was requested, but the only
license which can fulfill the request will expire

before the roam period ends.

RLM_EL_ROAMFILEERR -33
Problem with

roam file
There was a problem writing the roam data file

on the application's computer.

RLM_EL_RLM_ROAM_ERR -34
Cannot check out
rlm_roam license

A license was requested to roam, but the
application cannot check out an rlm_roam

license.

RLM Embedded Reference Manual Page 137 of 157

RLM_EL_WRONG_PLATFORM -35
Wrong platform

for client

The license specifies platforms=xxx, but the
application is not running on one of these

platforms.

RLM_EL_WRONG_TZ -36
Wrong timezone

for client

The license specifies an allowed timezone, but
the application is running on a computer in a

different timezone.

RLM_EL_NOT_STARTED
-37

License start date
in the future

The start date in the license hasn't occurred yet,
e.g., today you try to check out a license

containing start=1-mar-2030.
RLM_EL_CANT_GET_DATE -38 time() call failure The time() system call failed

RLM_EL_OVERSOFT -39
Request goes over
license soft_limit

This license checkout causes the license usage to
go over it's soft limit. The checkout is

successful, but usage is now in the overdraft
mode. RLM_EL_OVERSOFT is also returned
if you have a misconfigured token-based license

and the server has gone into overdraft due to
this. See the note in the token-based license

restrictions section.

RLM_EL_WINDBACK -40
Clock setback

detected

RLM has detected that the clock has been set
back. This error will only happen on expiring

licenses.

RLM_EL_BADPARAM -41
Bad parameter to
rlm_checkout()

call

This currently happens if a checkout request is
made for < 0 licenses.

RLM_EL_NOROAM_FAILOVER -42
Roam operations
not allowed on
failover server

A failover server has taken over for a primary
server, and a roaming license was requested.
Roaming licenses can only be obtained from

primary servers. Re-try the request later when
the primary server is up.

RLM_EL_BADHOST -43
bad hostname in

license file or
port@host

The hostname in the license file is not valid on
this network.

RLM_EL_APP_INACTIVE -44
Application is

inactive

Your application is set to the inactive state (with
rlm_set_active(rh, 0), and you have called

rlm_get_attr_health().

RLM_EL_NOT_NAMED_USER -45
User is not on the
named-user list

You are not on the named user list for this
product.

RLM_EL_TS_DISABLED -46
Terminal

server/remote
desktop disabled

The only available license has Terminal Server
disabled, and the application is running on a

Windows Terminal Server machine.

RLM_EL_VM_DISABLED -47
Running on

Virtual Machines
disabled

The only available license has virtual machines
disabled, and the application is running on a

virtual machine.

RLM_EL_PORTABLE_REMOVED -48
Portable hostid

removed

The license is locked to a portable hostid
(dongle), and the hostid was removed after the

license was acquired by the application.

RLM_EL_DEMOEXP -49
Demo license has

expired Detached Demotm license has expired.

RLM_EL_FAILED_BACK_UP -50 Failed host back If you application is holding a license from a

RLM Embedded Reference Manual Page 138 of 157

up - failover
server released

license

failover server, when the main server comes
back up, the failover server will drop all the

licenses it is serving, and you will get this status.

RLM_EL_SERVER_LOST_XFER -51
Server lost it's

transferred license

Your license was served by a server which had
received transferred licenses from another

license server. The originating license server
may have gone down, in which case, your server
will lose the licenses which were transferred to

it.

RLM_EL_BAD_PASSWORD -52
Incorrect

password for
product

RLM_EL_BAD_PASSWORD is an internal
error and won't ever be returned to the client - if

the license password is bad, the client will
receive RLM_EL_NO_SERV_SUPP

RLM_EL_METER_NO_SERVER -53
Metered licenses

require server
Metered licenses only work with with a license

server.

RLM_EL_METER_NOCOUNT -54
Not enough count

for meter
There is insufficient count in the meter for the

requested operation.

RLM_EL_NOROAM_TRANSIENT -55
Roaming not

allowed
Roaming is not allowed on servers with transient

hostids, ie, dongles.

RLM_EL_CANTRECONNECT -56
Can't reconnect to

server

On a disconnected handle, the operation
requested needed to reconnect to the server, and

this operation failed.

RLM_EL_NONE_CANROAM -57
None of these

licenses can roam

The license max_roam_count is set to 0. This
will always be the case for licenses that are

transferred to another server.

RLM_EH_SERVER_TOO_OLD -58
 Server too old for

this operation

In v10, this error means that disconnected
operation (rlm_init_disconn()) was attempted on

a pre-v10.0 license server.

Table of Contents

RLM Embedded Reference Manual Page 139 of 157

Appendix C – RLM Example Client Program

This example program (rlmclient.c) is contained on the RLM kit in the examples
directory.

/**

 COPYRIGHT (c) 2005, 2009 by Reprise Software, Inc.
 This software has been provided pursuant to a License Agreement
 containing restrictions on its use. This software contains
 valuable trade secrets and proprietary information of
 Reprise Software Inc and is protected by law. It may not be
 copied or distributed in any form or medium, disclosed to third
 parties, reverse engineered or used in any manner not provided
 for in said License Agreement except with the prior written
 authorization from Reprise Software Inc.

 ***/
/*
 * Description: Test client for LM system
 *
 * Usage: % sampleclient [product [count [version]]]
 *
 * Return: None
 *
 * M. Christiano
 * 11/27/05
 *
 */

#include "license.h"
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#endif /* _WIN32 */

static void printstat(RLM_HANDLE, RLM_LICENSE, const char *);

int
main(int argc, char *argv[])
{
 RLM_HANDLE rh;
 RLM_LICENSE lic;
 int stat, x;
 const char *product = "test1";
 int count = 1;
 const char *ver = "1.0";

 rh = rlm_init(".", argv[0], (char *) NULL);
 stat = rlm_stat(rh);
 if (stat)
 {
 char errstring[RLM_ERRSTRING_MAX];

 (void) printf("Error initializing license system\n");
 (void) printf("%s\n", rlm_errstring((RLM_LICENSE) NULL, rh,
 errstring));
 exit(1);
 }
 else
 {

RLM Embedded Reference Manual Page 140 of 157

/*
 * Use the program name as the license name
 */
 if (product = strrchr(argv[0], (int) '/')) product++;
 else if (product = strrchr(argv[0], (int) '\\')) product++;
 else product = argv[0];
 strncpy(p, product, RLM_MAX_PRODUCT);
 p[RLM_MAX_PRODUCT] = '\0';
/*
 * Don't want .exe
 */
 if (product = strchr(p, '.')) product = '\0';
 product = p;
/*
 * If product name wspecified, override program name
 */
 if (argc > 1) product = argv[1];
 if (argc > 2) count = atoi(argv[2]);
 if (argc > 3) ver = argv[3];
 lic = rlm_checkout(rh, product, ver, count);
 printstat(rh, lic, product);
 }

 (void) printf("Enter <CR> to continue: ");
 x = fgetc(stdin);

 if (lic)
 {
#if 0
/*
 * rlm_checkin() isn't necessary if you aren't going
 * to do anything else on the handle (other than check
 * in licenses). If you are using a handle created
 * with rlm_init(), then rlm_checkin() doesn't hurt
 * anything. But if you use a handle created with
 * rlm_init_disconn(), then rlm_checkin() causes an extra,
 * unnecessary network connection to the license server.
 */
 rlm_checkin(lic);
#endif
 rlm_close(rh);
 }
 return(0);
}

static
void
printstat(RLM_HANDLE rh, RLM_LICENSE lic, const char *name)
{
 int stat;
 char errstring[RLM_ERRSTRING_MAX];

 stat = rlm_license_stat(lic);
 if (stat == 0)
 (void) printf("Checkout of %s OK.\n", name);
 else if (stat == RLM_EL_INQUEUE)
 (void) printf("Queued for %s license.\n", name);
 else
 {
 (void) printf("Error checking out %s license\n", name);
 (void) printf("%s\n", rlm_errstring(lic, rh, errstring));
 }
}

Table of Contents

RLM Embedded Reference Manual Page 141 of 157

Appendix D – Example rlm_isv_config()
/**

 COPYRIGHT (c) 2005, 2018 by Reprise Software, Inc.
 This software has been provided pursuant to a License Agreement
 containing restrictions on its use. This software contains
 valuable trade secrets and proprietary information of
 Reprise Software Inc and is protected by law. It may not be
 copied or distributed in any form or medium, disclosed to third
 parties, reverse engineered or used in any manner not provided
 for in said License Agreement except with the prior written
 authorization from Reprise Software Inc.

 ***/
/*
 * Description: rlm_isv_config.c - configuration data for ISV
 *
 * M. Christiano
 * 11/25/05
 *
 */

#include "license.h"
#include "license_to_run.h"

/*
 * Define "INCLUDE_RLMID1" to include support for RLMID1 dongles.
 * Comment out to remove aladdin dongle support.
 *
 * Note: The RLMID1 dongle code is always included in
 * your license server. This setting is only for your applications, and
 * only needs to be set if you are issuing licenses that are nodelocked
 * to a dongle.
 *
 * Including the RLMID1 dongle code increases the size of
 * your applications by approx 900Kb on 32-bit windows, plus involves
 * a small delay at application startup time, even if you are not using
 * a dongle.
 *
 * If you are not planning to issue licenses which are node-locked to
 * rlmid devices, Reprise Software recommends leaving these options turned
 * off (ie, leave the "#if 0" on the next several lines).
 */

#if 0
#define INCLUDE_RLMID1
#endif

#ifdef INCLUDE_RLMID1
extern void _rlm_gethostid_type1(RLM_HANDLE, L_HOSTID);
#endif

void
rlm_isv_config(RLM_HANDLE handle)
{

/*
 * Set ISV name
 *
 * NOTE: IF you are evaluating RLM, DO NOT change the ISV
 * name, or your license keys will no longer work.
 * For eval kits, the name on the next line MUST
 * be "demo".

RLM Embedded Reference Manual Page 142 of 157

 *
 * NOTE: Your ISV name is, in general, case-insensitive.
 * The ONLY exception to this is when it is used as
 * a lockfile name using a FLEXlm-compatible lockfile.
 * In this case (and this case only), the case of the
 * name you enter here is important. Note that even in
 * this case, ONLY THE LOCKFILE NAME uses the exact case
 * you enter - every other place in RLM uses a lowercase
 * version of this name.
 *
 * Beginning in RLM v7.0, your ISV name is contained in
 * "license_to_run.h". If you need to alter the case of the
 * name for a compatible FLEXlm lockfile, you should do it there
 * and leave the next line as it is.
 *
 */
 rlm_isv_cfg_set_name(handle, RLM_ISV_NAME);

/*
 * Set RLM license - do not modify this line
 */
 rlm_isv_cfg_set_license(handle, RLM_LICENSE_TO_RUN);

/*
 * Set oldest allowed server version.
 *
 * The next setting controls the oldest RLM license server
 * version with which your application will work.
 *
 * The 3 parameters are rlm version, revision, and build (in
 * that order).
 *
 * If you leave this set to 0, 0, 0, your application will
 * attempt to work with the oldest available RLM server.
 *
 * You should only set this if you are concerned with an older
 * server in the field which has been hacked, otherwise, you should
 * leave it set to 0, 0, 0.
 *
 * (Note: Do not set this to anything between 0,0,0, and
 * 9,0,0). Servers older than v9.0 will appear to be v0.0)
 *
 */
 rlm_isv_cfg_set_oldest_server(handle, 0, 0, 0);

/*
 * Set ISV server settings file compatibility
 *
 * The next setting controls what versions of RLM your
 * ISV server settings file will work with. You can enable
 * it for all earlier versions (> v6), or later versions or both.
 * The 2nd parameter enables earlier versions if non-zero, the
 * 3rd parameter enables later versions if non-zero. Note that
 * "earlier" and "later" are relative to the version of your
 * settings file. So, if you create the settings file with RLM v8,
 * "earlier" means v6 and v7, while "later" means v9 and above.
 *
 * default is: rlm_isv_cfg_set_compat(handle, 0, 1); - sets compatibility
 * with later versions, but not earlier ones.
 */
 rlm_isv_cfg_set_compat(handle, 0, 1);

/*
 * Setup virtual machine enable/disable.
 *
 * By default (if you do not modify the following call), RLM

RLM Embedded Reference Manual Page 143 of 157

 * will refuse to run a license server on a virtual machine.
 *
 * You can always enable a particular virtual machine by issuing
 * an "rlm_server_enable_vm" license for that machine.
 *
 * If you want license servers to run on all virtual machines, set
 * the 2nd parameter of the next call to a non-zero value.
 *
 */
 rlm_isv_cfg_set_enable_vm(handle, 0);

/*
 * Beginning in RLM v10.0, roaming is disabled for servers that
 * use transient hostids (ie, dongles, or ISV-defined transient hostids).
 * If you want to enable roaming on these servers, set the 2nd
 * parameter of the next call to 1.
 */
 rlm_isv_cfg_set_enable_roam_transient(handle, 0);

/*
 * Beginning in RLM v10.0, you have the option of turning ROAMED
 * licenses into "single" licenses. Prior to RLM v10.0, all ROAMED
 * licenses were nodelocked, uncounted.
 * If you want your roamed licenses to be "single" licenses, set the
 * second parameter of the next call to 1.
 */
 rlm_isv_cfg_set_roam_single(handle, 0);

/*
 * FLEXlm(R)-style lockfile compatibility.
 *
 * Set to non-zero to use a FLEXlm-style lockfile. For windows
 * systems, a value of 1 uses the 'C' drive always, whereas a
 * value > 1 will use the system drive. FLEXlm (up to version
 * 10.3, at least) puts the lockfile on the 'C' drive.
 *
 * Reprise Software recommends setting this to 1 if you want to
 * use FLEXlm-compatible lockfiles.
 */
 rlm_isv_cfg_set_use_flexlm_lockfile(handle, 0);

/* The Windows disk serial number hostid code can return hostids
 * that are usable only by processes running with admin rights if
 * running with admin privileges. If an application is installed
 * and a license activated by an admin user, it's possible that
 * a non-admin user will not be able to use the application because
 * it can't read the disk serial number. Beginning in RLM v10.0,
 * you can disable the use of disk serial number hostids that are
 * usable by admins only. If you want to do so, change the second
 * parameter of the next function to 0.
 */
#ifdef _WIN32
 rlm_isv_cfg_set_use_admin_disksns(handle, 1);
#endif

/*
 * Beginning in RLM v10.0, RLM's license transfer capability also
 * allows for disconnected operation on the destination server.
 * This capability only requires that an "rlm_roam" license be
 * present on the destination server. You can ship an rlm_roam
 * license to your customer and have them install it on every
 * destination server, or you can simply put it into the next
 * call, in which case, no separate license file will be needed
 * on the destination license server.
 *
 * To enable this, set the 2nd parameter of the next call to a valid,
 * signed rlm_roam license (enclosed in "<>") in place of the
 * last argument. This license should be a static string

RLM Embedded Reference Manual Page 144 of 157

 * which is available for the lifetime of the server.
 *
 * This license MUST have the following parameters:
 * version: "1.0"
 * exp: "permanent"
 * count: "uncounted"
 * hostid: "any"
 * NO other parameters
 *
 * for example:
 *
 * rlm_isv_cfg_set_server_roam(handle, "<LICENSE your-isvname rlm_roam 1.0
uncounted hostid=any sig=xxxxxxx>");
 */
 rlm_isv_cfg_set_server_roam(handle, (char *) 0);

/*
 * Beginning in RLM v10.0, RLM can broadcast to find a license
 * server as a last resort, if all the normal methods to find
 * the server fail. This capability is enabled by default.
 *
 * To disable this, set the 2nd parameter of the next call to 1.
 */
 rlm_isv_cfg_disable_broadcast(handle, 0);

/*
 * Beginning in RLM v11.0, the client can specify that
 * it will not use a generic license server (i.e., rlm + a
 * settings file).
 * If you want to disable generic servers, set the 2nd
 * parameter of the next call to 1.
 * If you disable generic servers and your application
 * attempts to connect to a generic server, it will
 * receive an RLM_EH_SERVER_REJECT error upon connection
 * or an RLM_EL_SERVER_REJECT upon license checkout.
 * The text error message is "Server rejected client".
 *
 * Pre-v11 clients will get a "Communications error with
 * license server (-17), Connection refused at server (-111)"
 * error in this case.
 */
 rlm_isv_cfg_disable_generic_server(handle, 0);

/*
 * Beginning in RLM v10.1, licenses can be cached on the client
 * side with the use of the "client_cache" license attribute.
 * This capability must be enabled with the following call.
 * If the 2nd parameter is 1, client caching is enabled, if 0,
 * caching is disabled.
 */
 rlm_isv_cfg_enable_client_cache(handle, 1);

/*
 * Beginning in RLM v10.1, license servers can return one
 * valid license to the application which is then verified on
 * the client side. This check helps ensure that the license
 * server hasn't been modified. To enable this checking set
 * the second parameter of the next call to 1. If you enable
 * this, please read the section titled "Server Integrity Checking"
 * in the "Securing Your Application" section of the Reference
 * Manual so that you understand the errors which can be generated
 * as a result of this call and how you should proceed.
 */
 rlm_isv_cfg_enable_check_license(handle, 0);

/*
 * Beginning in RLM v11.0, you can specify which types of
 * hostids that Activation Pro will accept from an activation

RLM Embedded Reference Manual Page 145 of 157

 * request. Prior to v11.0, the only 6 types of acceptable
 * hostids were: rehostable, isv-defined, rlmid, ethernet,
 * disk serial numbers and native 32-bit hostids.
 * In the following call, you can set the default hostids that
 * your Actpro server will accept. To get the pre-v11 behavior,
 * set the 2nd parameter as shown. Hostid type definitions in license.h
 *
 */
#if 0
{
 int allowed_types = RLM_ACTPRO_ALLOW_REHOST | RLM_ACTPRO_ALLOW_ISV |
 RLM_ACTPRO_ALLOW_ISVDEF | RLM_ACTPRO_ALLOW_RLMID |
 RLM_ACTPRO_ALLOW_ETHER | RLM_ACTPRO_ALLOW_DISKSN |
 RLM_ACTPRO_ALLOW_32 | RLM_ACTPRO_ALLOW_UUID |
 RLM_ACTPRO_ALLOW_ASH;
 rlm_isv_cfg_actpro_allowed_hostids(handle, allowed_types);
}
#endif

/*
 * Beginning in RLM v11.2, license servers can utilize
 * Alternate Server Hostids. These hostids are activated
 * from Activation Pro by the ISV server, which needs to
 * know the URL of the activation server.
 * If you use Reprise's hosted activation service, the default
 * (hostedactivation.com) is correct. For all others, set your
 * activation server url here. Note that this URL pointer must
 * remain valid as long as the RLM_HANDLE is in use.
 */
 /*** rlm_isv_cfg_set_url(handle, "hostedactivation.com"); ***/

/*
 * Rehostable hostids do two checks at verification time which
 * fail on certain systems. These checks are:
 * - checking the file ID of each file in the rehostable hierarchy, and
 * - checking the native hostid of the system
 *
 * The file ID check fails on Windows systems if drives are added or
 * removed from the controller.
 * We have seen the native hostid change on Centos systems when the
 * network cable is unplugged.
 *
 * Beginning in RLM v12.3, you can disable one or both of these
 * checks by setting the second parameter of the two following
 * calls to 1. The default behavior remains the same as in
 * previous versions of RLM.
 */
 rlm_isv_cfg_disable_windows_fileid_check(handle, 0);
 /* 0 -> check, <>0 -> no check */
 rlm_isv_cfg_disable_reference_hostid_check(handle, 0);
 /* 0 -> check, <>0 -> no check */
/*
 * Roam extension is a new feature in RLM v12.3, and it is disabled
 * by default. If you enable it, be aware that the max_roam setting
 * from your rlm_roam license will NOT be honored for a roam extension,
 * only the max_roam setting of the license which is roaming. This means
 * that if you use max_roam on the rlm_roam license to limit roaming
 * duration on your licenses, it will not be effective for any roam
 * extension. The default max_roam on any license is 30 days, so this
 * may or may not be an issue for you.
 *
 * To enable roam extensions, set the 2nd parameter of the next call
 * to 1. If you use a server settings file, you must re-generate the
 * settings file with your v12.3 kit, otherwise, the roam extension will
 * not appear in the RLM web interface.
 */
 rlm_isv_cfg_enable_roam_extend(handle, 0);

RLM Embedded Reference Manual Page 146 of 157

/*
 * New in v12.4, the RLM web services API (used with RLMCloud) has an
 * isv-defined server handshake function. To use this, specify the 2
 * parameters to the server-side of the algorighm here. P1 is any
 * 32-bit number, but avoid long sequences of 0's or 1's. P2 is any
 * 31-bit number, i.e. bit 31 (high-order bit) should be 0.
 * NOTE: CHANGE THE DEFINTIONS of P1/P2 that appear here.
 */
#define P1 0x5c7daf39
#define P2 0x10030034
 rlm_isv_cfg_set_isv_handshake(handle, P1, P2);

/*
 * Prior to RLM v12.4, if you enabled the check for server licenses
 * by calling rlm_isv_cfg_enable_check_license(handle, 1), connections
 * to the license server would fail if the license either contained new
 * keywords or was invalid. In v12.4 and later, you can cause the
 * connection to succeed and retrieve the status later. To do this,
 * set the 2nd parameter of the next call to a non-zero value. After
 * connecting, you can call rlm_get_attr_checked_license() on the handle.
 * rlm_get_attr_checked_license will return 0 for success or either
 * RLM_NO_SERVER_LIC, RLM_LIC_NEW_KEYWORDS or RLM_LIC_BAD.
 */
 rlm_isv_cfg_no_server_license_fail(handle, 0);
 /* 0 -> check, <>0 -> no check */

/*
 * To include RLMID1 dongle code, be sure INCLUDE_RLMID1 is defined above.
 */

#ifdef INCLUDE_RLMID1
 rlm_isv_cfg_set_use_hostid(handle, RLM_HOSTID_RLMID1,
 _rlm_gethostid_type1);
#endif
}

Table of Contents

RLM Embedded Reference Manual Page 147 of 157

Appendix E – RLM Hostids

RLM supports several different kinds of identification for various computing environments, as well as
some generic identification which are platform-independent.

RLM's host identification (hostid) types are:

hostid type meaning example
Platform
Support

of instances
in RLM client

Notes

ANY runs anywhere ANY all 1

DEMO runs anywhere for a demo license DEMO all 1

serial number runs anywhere sn=123-456-789 all 1
used to identify a license,

equivalent to string, any string
up to 64 characters long

32
32-bit hostid, native on Unix, non

X86 based platforms, System Drive
Volume Serial Number on Windows

10ac0307 all 1
should not be used on Linux or

Mac

disksn (see note
below)

Disk hardware serial number
disksn=WD-

WX60AC946860
windows 1 Introduced in RLM v9.2

gc Google Compute Engine

gc=37977422264589
86650.k6qt9v5h38w
2adwqgc9fdhdf3w0

m761p

Linux 0
Introduced in RLM v11.1

See note below.

ip (or internet) TCP/IP address ip=192.156.1.3 all 5
always printed as "ip="

(wildcards allowed starting in
v3.0, see notes)

ether (See note
below)

Ethernet MAC address ether=00801935f2b5
windows,
mac, linux

5
always printed without leading

"ether="

rlmid1 External Key or Dongle rlmid1=9a763f21
Windows,

linux
6 (total of all

rlmids)

USB Dongle. Always enabled in
ISV license server. See

Appendix F – Optional Hostid
Installation Instructions on page
151 for details on building your

software as well as extra
software you need to ship with

your product.

uuid BIOS uuid
uuid=699A4D56-

58BF- 1C83-D63C-
27A8BEB8011A

Windows 1

user User name USER=joe all 1 case-insensitive

host Host name host=melody all 1
Case-insensitive (wildcards

allowed starting in v9.4 – see
notes)

To determine the hostid of a machine, use the hostid type from the table above as input to the rlmhostid
command:

rlmutil rlmhostid hostid type

For example:

rlmutil rlmhostid 32
or
rlmutil rlmhostid internet

Note that rlmhostid will not return a string or serial number hostid type, since these values are unrelated to

RLM Embedded Reference Manual Page 148 of 157

javascript:;
javascript:;

any particular computer - they are simply values that the ISV creates to differentiate licenses.

When an application requests a license from a license server, it will transmit the hostid information from
the local machine to the license server, so that the server can process node-locked licenses without
additional queries to the application. The application will transmit a maximum of 25 different hostids:

 one 32-bit hostid, if present on this platform
 up to 5 IP addresses (ip=)
 up to 5 ethernet MAC addresses (ether=)
 up to 6 RLMID portable hostids
 a minimum of 3 ISV-defined hostids (usually more, but guaranteed to be at least 3)

A Note about Windows Ethernet hostids

Some interfaces on Windows systems have Ethernet MAC addresses which are undesirable for use as
hostids because they are transient, i.e. not always available. These include wireless interfaces, virtual
interfaces like VPNs, etc.

On Windows, RLM looks for keywords in the device description to decide what interfaces are undesirable.
Licenses can be locked to these interfaces if necessary, as it might be that only undesirable interfaces exist
on a given machine. However, When RLM generates a list of MAC addresses on a Windows machine, it
orders the list such that the undesirables are at the end of the list. So the first hostid printed by rlmhostid,
and the one returned by rlm_hostid() will be the best one available on that Windows system.

A Note about Windows disksn hostids

Some disk serial numbers on Windows are only accessible to a process running with admin privileges. To
disable use of disk serial numbers that only admins can use, see the call to
rlm_isv_cfg_set_use_admin_disksns() in rlm_isv_config.c".

A note about Google Compute Engine, and the gc= hostid type

If the RLM algorithm to determine that it is running on google compute engine does not detect google
compute engine for any reason, you can set the RLM_GOOGLE_CLOUD environment variable (to any
value) to indicate to RLM that it is running on Google Compute Engine.

Misc notes:

Note: The RLMID series of hostids are optional products, and will often require other software to be
installed on the system on which they are to be used. For these devices, see Appendix F – Optional Hostid
Installation Instructions, on page 151.

Note: Beginning in RLM v3.0, IP address hostids can contain the wildcard ('*') character in any position to
indicate that any value is accepted in that position.

Note: Beginning in RLM v9.4, a wildcard may be used in the host type hostid, for example:
"hostid=host=*.stanford.edu" or "hostid=host=*.reprisesoftware.com"

RLM Hostid Security

RLM Embedded Reference Manual Page 149 of 157

RLM hostids have varying levels of security. We describe these levels as:

 minimal (min) - the hostid works anywhere - nothing is required to run on any machine
 low - the hostid is locked, but the data it is locked to is easily changable, and in fact, the data is

meant to be changed and changing it is fully documented. (in the case of Windows 32-bit hostids,
which are the volume serial number, PC manufacturers often create batches of PCs with the same
volume serial number).

 standard (std) - the hostid is locked to something which is not designed to be changed. Changing
this requires some kind of hacking software, which may or may not be easily obtainable.

The following table shows RLM hostids and their security levels:

hostid type security level Notes

ANY min

DEMO min

32 (or long) low or std Depends on the platform, see table below

diskid std

gc std

ip (or internet) low

ether std

rlmid1 std

user min

host min

The following table lists the security level of the 32-bit hostid type, by platform:

Platform 32-bit hostid security

hp_h1 std

hp64_h1 std

ibm_a1 std

ibm64_a1 std

x86_l1, x86_l2 low

ppc64_l1 low

x64_l1 low

x86_m1 low

x64_m1 low

ppc_m1 low

x64_s1 std

sun_s1 std

x64_s1 std

x86_w3/4 low

x64_w3/4 low

Table of Contents

RLM Embedded Reference Manual Page 150 of 157

Appendix F – Optional Hostid Installation
Instructions

Certain hostids in the RLMID family (RLMID1) require device-specific installation on the target computer.
These instructions must be passed on to your customer's license administrator in order for them to use the
device. The RLMid1 device is a hardware key manufactured by Aladdin Knowledge Systems (now
SafeNet, Inc).

Installing RLMid1 Devices on Windows

 Installation on a target system can be accomplished in two ways:

 use Windows "Found New Hardware" to automatically load the drivers (preferred), or
 use the RLMID1 driver installer (from the Reprise Software website) to do the driver installation

Installation using the Found New Hardware Wizard

In order to use Windows to automatically do the driver installation, simply plug the device into the
computer, and Windows will detect the new device. You will get the "Found New Hardware" wizard which
will install the drivers for the "USB Protection Device" for you, as shown below:

Next, select "Install the Software
Automatically (recommended)",
and click "Next". Windows will
locate the driver and install it. You
will then get the "Completing the
Found New Hardware Wizard"
shown on the right; click "Finish".

That is all there is to it.

RLM Embedded Reference Manual Page 151 of 157

Installation using the driver installer.

If for some reason Windows fails to update the driver automatically, or if the target system is not connected
to the internet, use the driver installer located at:
http://www.reprisesoftware.com/drivers/rlmid1.zip

you can also download the driver directly from the SafeNet site:

ftp://ftp.aladdin.com/pub/hasp/Sentinel_HASP/Runtime_%28Drivers%29/Sentinel_HASP_Run-
time_setup.zip

Unzip the installer and run it on the target system.

Note that an RLMID1 device can be used by any RLM-licensed application on the system, in other words,
there is nothing ISV-specific about the device.

Installing RLMid1 Devices on Linux

 To install the necessary drivers for RLMid1 devices on linux, follow these steps:

1. Browse to http://sentinelcustomer.safenet-inc.com/sentineldownloads/. Look for the "Sentinal
HASP/LDK Rutime Installer" for Linux. There are several options, depending on Linux variant
and the style of installer you want (GUI, RPM, script).

2. Download the appropriate installer and install. Note that you will have to execute the installation
as root.

The runtime installer sets up a daemon that is used to access the hardware key.

Table of Contents

RLM Embedded Reference Manual Page 152 of 157

ftp://ftp.aladdin.com/pub/hasp/Sentinel_HASP/Runtime_(Drivers)/Sentinel_HASP_Run-time_setup.zip
ftp://ftp.aladdin.com/pub/hasp/Sentinel_HASP/Runtime_(Drivers)/Sentinel_HASP_Run-time_setup.zip
http://www.reprisesoftware.com/drivers/rlmid1.zip

Appendix G - Release Notes

Release Notes - RLM v12.4BL2 July 24, 2018

This is the first production release of v12.4.

V12.4 is available on Mac, Windows, Linux (intel), and Solaris platforms.

Note: v12.4BL2 will be the last release that supports the x86_w2 and x64_w2
platforms (visual studio 2005/2008). (Microsoft ceased support for VS2005
in April 2016, and for VS2008 in April 2018)

Note: the old (file-based) internet activation product is no longer supported.

Note: failover servers are not supported on HP/UX, AIX, or IBM Power
 Linux systems.

Dynamic reservations are not supported on Sparc Solaris systems.

This release fixes bugs P494-P500 and P503.

For each bug, we will indicate which RLM components need to be updated
for the bug fix. This indication will be of the form:

Fix requires: server
 or

Fix requires: rlm, settings

This indication will list one or more of the following:

- client - meaning you have to re-build your application.
- rlm - meaning you need a new rlm binary (ie, you have nothing

to re-build)
- server - meaning you need a new rlm binary if you use the

generic ISV server settings file, or a new ISV server
if you use an ISV-specific server binary.

- settings - meaning you need a new ISV server settings file.

Known Issues in this release

On Windows, the Activation Pro setup procedure sometimes does not set
the file modes correctly. Once your Activation Pro files are set up,
follow the procedures in the "Security Considerations" section of the
manual in the "Activation Pro Setup" chapter.

On Windows 7, there is an optional Skype add-on to Firefox that interferes
with the operation of some TiddlyWiki pages. To ensure that the RLM
documentation can be displayed properly within Firefox (on Windows 7), the
Skype Add-on should not be installed.

For an up-to-date list of issues, see:
http://www.reprisesoftware.com/publisher/licensing-software-issues.php

Note: The documentation is contained in 5 manuals:

 Standard RLM Components

RLM Embedded Reference Manual Page 153 of 157

 * RLM Getting Started Guide - an introduction to the basic concepts of
license management and RLM (PDF)

 * RLM Reference Manual - the complete reference to all core RLM components
(PDF)

 * RLM License Administration Manual - The stand-alone License
Administration manual, suitable for shipment to your customers (Wiki)

 Optional RLM Components

 * RLM Activation Pro Getting Started Guide - an introduction to the RLM
Activation Pro software (PDF)

 * RLM Activation Pro Manual - Reference for the Optional RLM Activation
Pro software (PDF)

 All manuals are in PDF format, and are available on the Reprise Website at:
 http://www.reprisesoftware.com/kits/RLM_Getting_Started_Guide.pdf
 http://www.reprisesoftware.com/kits/RLM_Reference.pdf

http://www.reprisesoftware.com/kits/RLM_Activation_Pro_Getting_Started_Guide.pdf
 http://www.reprisesoftware.com/kits/RLM_Activation_Pro.pdf
 http://www.reprisesoftware.com/kits/RLM_License_Administration.pdf

What's new

(See the reference manual for complete descriptions)

- The internal processing for rehostable hostids has changed. Prior
 to v12.4, the rlm library changed working directories while
 creating and checking rehostable hostids, which potentially
 caused problems in multi-threaded programs. See the note in the
 API description of rlm_get_rehost() for more information.

New License Keywords

- The new alias license is introduced. You can think of an alias
 license as the client-side equivalent of token-based licenses. See
 Alias Licenses in the Reference Manual for more information.

- The token_locked keyword is deprecated. token_locked was not
 locked to anything, this is P501 (which is not published on our
 website). The new token_bound keyword has the functionality that
 was intended for token_locked. See the note in the Token-Based
 Licenses chapter of the Reference Manual.

API additions

- The rlm_license_ismetered() and rlm_product_ismetered() calls are
 added to determine if a license is a metered license.

- If you enable the check of a server license, you can tell RLM to
 continue even if there are failures. See Server Integrity Checking
 and rlm_get_attr_lic_check() in the Reference Manual for more
 information.

API changes

- The rlm_act_keyinfo2() call is added. See rlm_act_keyinfo() in
 the Reference Manual for more information.

- The callback function specified by rlm_auto_hb() has a new, extra
 parameter. See rlm_auto_hb() in the Reference Manual for more
 information.

RLM Embedded Reference Manual Page 154 of 157

- The rlm_product_meter_cur_count() call is added. See rlm_products()
 in the Reference Manual for more information.

Options file changes

- None.

Activation changes

- RLM Activation Pro has new features. Please see the
 Activation Pro manual for details.

Problems fixed in this release

This release fixes bugs P494-P500 and P503.

P494 - Actpro web services were broken in v12.3.
This is fixed in v12.3BL3-p1 and v12.4BL1. Fix affects: web services.

P495 - In actpro, if you put an "=" sign in the options string, it is saved,
but after editing, it disappears. Anything after a 2nd "=" sign is
discarded.
This is fixed in v12.4BL1. Fix affects: rlc.

P496 - On a CUSTOMER line if any keywords lack values, for example
"password foo" instead of "password=foo", the client may crash
when rlm_free() is called.
This is fixed in v12.4BL1. Fix affects: client.

P497 - In actpro, Anything after a double-quote in the notes field
(including the quote) for a company is removed when editing.
This is fixed in v12.4BL1. Fix affects: rlc.

P498 - In actpro, selecting "alternate server/nodelock" in allowed hostid
types doesn't get preserved when editing a product definition or
activation key.
This is fixed in v12.4BL1. Fix affects: rlc.

P499 - The Actpro license generator doesn't write the new expiration date
into the key if the "misc" field has quoted strings.
This is fixed in v12.4BL1. Fix affects: actpro license generator.

P500 - In actpro, the "text to prepend" fails if quotes are added.
This is fixed in v12.4BL1. Fix affects: rlc.

P503 - Under heavy compute load the get UUID code returns after 2 seconds
even if the thread that actually gets the UUID is still running.
Later that thread writes the buffer it was passed, which is on the
stack and may no longer be valid. This can cause a segfault, or at
least memory corruption.
This is fixed in v12.4BL2. Fix affects: client and server.

Platforms Supported

Linux on arm9: 32-bit
Linux on X86: redhat v9 (x86_l2)

RLM Embedded Reference Manual Page 155 of 157

Linux on x64: 64-bit fedora core linux (x64_l1)

Solaris32 on Sparc (sun_s1)
Solaris64 on Sparc (sun64_s1)
Solaris64 on Opteron (x64_s1)

Windows 32-bit - Visual Studio 2010 (x86_w3)
Windows 32-bit - Visual Studio 2015 (x86_w4)
Windows 64-bit - Visual Studio 2010 (x64_w3)
Windows 64-bit - Visual Studio 2015 (x64_w4)

Mac OS/X intel (x86_m1)
Mac OS/X intel 64-bit (x64_m1)

RLM Build environment

arm9_l1:
gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

sun_s1, sun64_s1:
SunOS 5.9 Generic sun4u sparc SUNW,Ultra-5_10
cc: Sun C 5.8 2005/10/13

x64_l1
Linux 2.6.15-1.2054_FC5 #1 SMP Tue Mar 14 15:48:20 EST 2006 x86_64 x86_64 x86_64 GNU/Linux
gcc version 4.1.0 20060304 (Red Hat 4.1.0-3)

x64_m1:
Darwin 9.6.0 Darwin Kernel Version 9.6.0: Mon Nov 24 17:37:00 PST 2008;

root:xnu-1228.9.59~1/RELEASE_I386 i386
gcc version 4.0.1 (Apple Inc. build 5465)

x64_s1
SunOS 5.10 Generic_147148-26 i86pc i386 i86pc
cc: Sun C 5.8 2005/10/13

x64_w3
Microsoft Visual Studio 2010

x64_w4
Microsoft Visual Studio 2015

x86_l2:
Linux 2.4.20-6smp #1 Thu Feb 27 09:59:40 EST 2003 i686 i686 i386 GNU/Linux
gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)

x86_m1:
Darwin 8.5.3 Darwin Kernel Version 8.5.3 Fri Feb 17 15:59:40 PST 2006;

root:xnu-792.9.11.obj~1/RELEASE_I386 i386 i386
gcc version 4.0.1 (Apple Computer, Inc. build 5250)

x86_w3:
Microsoft Visual Studio 2010

x86_w4:
Microsoft Visual Studio 2015

Table of Contents

RLM Embedded Reference Manual Page 156 of 157

Appendix H - Frequently-Asked Questions

Reprise Software maintains a list of frequently-asked questions on our website. For the current list of
Frequently-Asked Questions, please see our website.

For ISVs, see the FAQ at the reprise website at:

 http ://www.reprisesoftware.com/publisher/license-management-faq.php

For License Administrators, see the License Administrator FAQ at

http://www.reprisesoftware.com/admin/software-licensing-faq.php

Table of Contents

RLM Embedded Reference Manual Page 157 of 157

http://www.reprisesoftware.com/isv_faq.htm

