
RLM Embedded Getting Started Guide

RLM v13.0

November, 2018

Contents

Welcome ... 3
Licensing 10,000 foot Overview ... 4
Running the Demo - Quick-Start Guide 6
Building the Demo on Windows .. 7
Building the Demo on Unix or Mac .. 8
Running the Demo .. 9
Integrating RLM Into Your Product ... 10
Making Your Product Production-Ready.................................. 15
Best Practices for RLM Integration ... 19
Creating Licenses ... 21

Appendix A – RLM Example Client Program 23
Appendix B - RLM Kit Contents ... 25
Appendix C - RLM Hostids .. 28
Appendix D – RLM Version Comparison ….............................. 29

RLM Documentation - Copyright (C) 2006-2018, Reprise Software, Inc

RLM - Reprise License Manager - Copyright (C) 2006-2018 Reprise Software, Inc

Reprise License Manager TM
Copyright © 2006-2018, Reprise Software, Inc. All rights reserved.

Detached Demo, Open Usage, Reprise License Manager, RLM, RLM-Embedded and Transparent License Policy are
all trademarks of Reprise Software, Inc.

FLEXlm is a trademark of Macrovision Corporation.

RLM contains software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org)

RLM contains software (the GoAhead WebServer) developed by GoAhead Software, Inc. (http://www.goahead.com)

The RLM documentation is produced with TiddliWiki (Copyright (c) Osmosoft Limited, 14 April 2005)

The rlmid options contain copyrighted materials as follows:
 rlmid1 devices are manufactured by Aladdin Knowledge Systems, Inc.
 rlmid2 devices are manufactured by SafeNet, Inc.

http://www.goahead.com/
javascript:;

Welcome

Welcome to the Reprise License Manager (RLM), the newest license manager brought to
you by the team who developed FLEXlm ®

About this Manual

This manual, the RLM Embedded Getting Started Guide, contains the step-by-step guide
to get you starting using RLM Embedded. When you have finished this guide, you will
have run sample licensed applications as well performed a simple integration of RLM
into your own application (if you choose to do so). This manual does not describe the
setup and operation of the Reprise activation software (Activation Pro). That is
described in the RLM Activation Pro Getting Started Guide.

Introduction To RLM Embedded

The Reprise License Manager (RLM) allows a software vendor (ISV) to flexibly price
and license their product(s) for delivery to their customers. At its most basic level, RLM
Embedded allows an ISV to deliver fixed (node-locked) licenses to their customers.

What sets RLM apart?

RLM was designed from the start to emphasize openness, transparency, and simplicity.

RLM is open because we publish the format of our license file, so that your customers
can always examine and know what your license rights are.

RLM is transparent in the sense that we do not allow "back doors" which lead to unique
behaviors from one ISV to another. In addition, we have removed policy from the
application code, and placed it into the license key itself, so that your customers will be
able to understand the license terms without having to understand your implementation.

RLM is simple because we place the policy in the license(tm) and not encoded into
multiple API calls.

Licensing 10,000 foot Overview

If you have used other license management products, you can skip this chapter. If you are
new to license management, however, we have included an overview of how license
management products operate.

First, a few definitions

Term How used in this manual

license manager a software component which keeps track of the right to use a software product

product Your software

product name The name used by the product to request it's license

license The right to use a product, incorporated into a short text description. Referred
to by the product name

check out The act of requesting a license for a product

check in The act of releasing the license for a product

node-locked
(license)

A license which can be used only on a particular specified computer

floating (license) A license which can “float” on a network, in other words, one which can be
used by anyone who can access the license server (Note: RLM Embedded does
not support floating licenses).

ISV Independent Software Vendor, i.e., your company

License Manager Overview

License managers control the allocation of licenses to use software products. They do
this by allowing a product to check out and check in a named license. The license
manager keeps track of which users and computers can use these licenses.

Most license managers provide APIs with calls to control many of the aspects of
licensing behavior. First-generation license managers (such as FLEXlm) took the
approach of providing extremely complex APIs and internal license server options to
control license policy, with relatively less control contained in the licenses themselves.

Unlike the first-generation license managers, the design philosophy of RLM is to
preserve the simplicity of the system for both ISVs and License Administrators by
avoiding all unnecessary options in the client library and moving as many of these
options to the license file as possible, where they are visible and understandable by
everyone.

In general, even when API calls are available to control it, license policy should be kept
out of the application, and placed into the license itself. This makes for a more
understandable licensing system for both ISVs and License Administrators. This results
in much more standard behavior of application licensing from ISV to ISV. The Reprise
team learned this the hard way when we supported thousands of customers in the past,
and we applied these lessons to the design of RLM.

License Types

RLM Embedded supports node-locked licenses only. The full version of RLM supports:

 node-locked (runs on a specified node only)

 floating (available anywhere on a network, up to a concurrent usage limit)

 token or package-based

In addition, licenses will contain various attributes which further restrict their use. Some
attributes are:

 expiration date

 highest available software version

 start date

RLM Embedded supports all the license attributes above, as well as many, many others.

License Manager Components

RLM embedded consist of 3 components:

 A client library

 License utilities, and

 A license description repository (i.e., a license file)

How To Get Licenses To Your Customer

Typically, licenses are delivered in text form to customers. Long ago, this was done via
phone/fax/magnetic media. Today, the most common license delivery mechanism is the
internet, either via email or automatic activation from an activation server at the ISV site.

RLM licenses are always 100% ascii text, and can be delivered by any convenient means,
however email and activation are by far the most common delivery mechanisms.

Running the Demo - Quick-Start Guide

To get you started as quickly and easily as possible with RLM, we will first use the
binaries on the kit. After you are familiar with the basic operation of RLM Embedded,
you can integrate the RLM calls into your application.

[You should note that the RLM kit is the same for the full version of RLM and RLM
Embedded. The functionality of the kit is controlled by the license you receive from
Reprise Software. RLM-embedded licenses all contain the string “options=embedded”.]

To start, we will download the kit, then the next 2 chapters will give detailed directions
on how to build the kit for Windows and Unix/Mac systems.

Download the RLM kit from the Reprise website

To download RLM, go to the Reprise Website Download area, enter your
username and password, and select the kit(s) you want to download. Save this on
your system.

Note: When downloading Unix or Mac kits using Internet Explorer on Windows
XP systems, the files are incorrectly named as 'platform.tar.tar', rather than
'platform.tar.gz', once downloaded. This is a browser issue - after transfer, please
rename the file before installation.

Each kit has a descriptive name on the website. The file names of the kits follow
Reprise Software's platform naming conventions with ".tar.gz" on Unix and Mac
platforms. On windows, the kits are self-installing .exe files. Some examples are
listed here. Reprise supports many more platforms than the ones listed here, so if
you don't see your platform, contact your Reprise salesperson:

Platform
Platform

Name
Kit file name

Linux on Intel X86 x86_l2 x86_l2.tar.gz

Mac on Intel X86 x86_m1 x86_m1.tar.gz

Windows on Intel X86 (visual C 2010-2013) x86_w3 rlm.v13.0BL1-x86_w3.exe

Windows on Intel X86 (visual C 2015 and later) x86_w4 rlm.v13.0BL1-x86_w4.exe

Windows 64-bit on intel (Visual C 2010-2013) x64_w3 rlm.v13.0BL1-x64_w3.exe

Windows 64-bit on intel (Visual C 2015and later) x64_w4 rlm.v13.0BL1-x64_w4.exe

http://www.reprisesoftware.com/publisher/license-management-downloads.php

Building the Demo on Windows

1. Extract the kit files:

On Windows, run the installer from the .exe file you downloaded. The rlm files
will be installed into the folder you selected (My
Documents\Reprise\rlm.v13.0BL1-x86_w3 by default for the x86_w3 kit for
RLM v13.0BL1).

2. Build the kit:

You have 2 options for configuring RLM on Windows - you can either use a
Visual Studio or Visual C++ Project, or a Command Window. Each method has
the same outputs; choose the method you’re more comfortable with.

To build using Visual Studio/Visual C++:
1. The platform directories (x86_w*and x64_w*) contain Microsoft Visual

Studio or Visual C++ project and workspace files. Double-click on the
appropriate file to launch Visual Studio/Visual C++. In x86_w3, double-
click on x86_w3.vcproj. In x64_w4, double-click on x64_w4vcproj, etc.

2. When the development environment comes up, click on the Build menu
and select "Rebuild All" (Visual C++) or "Build Solution" (Visual Studio).
When the build is done, the output window should indicate 0 errors and
warnings.

You may be prompted to allow Visual C++ to convert the project to a later
version. Allow it to do so, then proceed.

To build using a Command Window:
1. Create a command window with the Visual C++ environment set up

◦ Create a command window and run a batch file provided by
Microsoft to set up your command window for the next
step. The batch file is Program Files [(x86)]\Microsoft
Visual Studio <version>\VC\vcvarsall.bat
-OR-

◦ Create a command window via the Start->MS
VisualStudioxxx or Start->MS Visual C++ menu. The
specific sub-menu items vary with version but the target is
"Visual Studio Comand Prompt".

2. cd to the platform directory of the SDK, for example
cd x86_w3

3. Type nmake

Building the Demo on Unix or Mac

1. Extract the kit files:

Use gunzip/tar to extract the archive:

 % gunzip platform.tar.gz
 % tar xvf platform.tar
 % ./INSTALL (enter a <CR> when prompted for an ISV name).

2. Build the example program from the platform directory (eg, x86_l2, x86_m1,
etc):

First, change directory to the place where you extracted the kit. Next, execute the
following 3 commands:

 % cd platform_dir (eg: x86_l2, x86_m1, sun_s1, etc)
 % make
 % rlmsign example.lic

Running the Demo
1. Run the example program

Start in the platform_directory directory (the same directory you were in
above), and run the rlmclient program to check out an rlmclient license.
Run rlmclient as follows:

 % rlmclient

The license you just checked out looks like this (this license is in the file
example.lic):

LICENSE demo rlmclient 1.0 permanent uncounted hostid=any sig=...

About this license:

• “demo” is the ISV name. When you purchase RLM Embedded, you will
pick your ISV name.

• “rlmclient” is the license name. The rlmclient program checks out an
“rlmclient” license by default.

• “1.0” is the license version. Any checkout of a version <= 1.0 will be
satisfied by this license.

• “permanent” is the expiration date, ie, this license never expires.

• “uncounted” is count field of the license. “uncounted” means “uncounted,
node-locked”. An uncounted license must always have a hostid.

• “hostid=any” is the hostid where this license can be used. In this case, for
the example, we created a license which works anywhere. In practice, you
will get your customer's hostid at the time of purchase, and create a license
for that host.

• “sig=...” is the license signature. This is inserted by the rlmsign program,
or the license can be created and signed by RLM Activation Pro.

Congratulations! You have now built the sample program and checked out a
node-locked license. There's not much more to it than that. Now, you are ready to
integrate the RLM calls into your application and try it out. You can browse some
example code in the examples directory on the kit (the example application is also
located in Appendix A – RLM Example Client Program, on page 23.)

Integrating RLM Into Your Product

If you would like to integrate RLM into your own product, you will need to
configure the RLM libraries and add calls to the RLM functions in your software.

If your application is written in Java, you should read this chapter to familiarize
yourself with the basic RLM concepts. There are some Java-specific installation
and integration instructions in the RLM Reference Manual. If you have a .NET
application, you will find instructions for integrating RLM in the RLM Reference
Manual.

Reprise Software recommends that you take a look at the rlmclient.c sample
program in the examples directory of the RLM kit. This example shows the use
of the first 7 of the 8 functions in the RLM core API. This example program is
also contained in Appendix A of this document.

These first 7 functions are the basic functions you will use in your application.
When you are ready to learn more about these or other RLM functions, consult
the RLM Reference Manual.

The game plan

As an ISV you integrate RLM by adding calls from the RLM client library into
your application. You then ship your product plus a few additional components
of the RLM license system, as required. You can accomplish the engineering
portions of these tasks in less than a day – the hardest work is deciding what to
license, and what license rights to grant to your customers. Once you integrate
RLM, the additional components you ship are:

◦ a license file to describe your customer’s rights to the product (custom-

generated by you for each of your customers)
◦ the rlm utilities (rlmutil – a standard part of the RLM kit)

Except for the license file, the components are the same for every one of your
customers. The actual license file, which describes your customer’s rights to the
product, will (in almost all cases) be different for every one of your customers.

RLM embedded requires no network connection nor license server processes. If
you use the optional RLM Activation Pro product, you will need network
connectivity (over the internet) to your activation server.

Given that background, now we are ready to start.

Integrating RLM into your application – the 3 steps

To integrate RLM into your software, there are three steps:

1. Download and install the kit from the Reprise website

2. Configure your RLM libraries

3. Add RLM API calls to your application

These steps are described in the following sections.

 Step 1: Download and install the kit from the Reprise website

If you ran the demo in the second chapter, you have already done this. If not,
follow the instructions there.

 Step 2: configure your RLM libraries

Windows:

The kit is a self-installing .exe file. Run the installer, which will extract the kit
directories (src and x86_w3 or x86_w4 for 32-bit or x64_w3 or x64_w4 for 64-
bit). By default these are installed into My Documents on your system.

You have 2 options for configuring the libraries on Windows – you can either use
a Visual Studio or Visual C++ Project, or a Command Window. Each method has
the same outputs; choose the method you’re more comfortable with.

Configuring RLM with Visual Studio

The platform directories (x86_w*, and x64_w*) contain Microsoft Visual
Studio or Visual C++ project and workspace files. Double-click on the
appropriate file to launch Visual Studio/Visual C++:

Platform File to double-click
x86_w3 x86_w3\x86_w3.vcproj
x64_w3 x64_w3\x64_w3.vcproj
x86_w4 x86_w4\x86_w4.vcproj
x64_w4 x64_w4\x64_w4.vcproj

Click on “Rebuild All” in the Build menu in Visual C++, or “Build
Solution” in Visual Studio. The build will complete after a few seconds
and the output window will indicate 0 errors and 0 warnings.

You may be prompted to allow it to convert the project to a later version.
Allow it to do so, then proceed.

Configuring RLM with a Command Window

To launch a Command Window with the development environment already set
up, use one of the options in the:

Start->All Programs->Microsoft Visual Studio 20xx->Visual Studio Tools

menu. The options differ with the specific version and edition of Visual Studio,
but choose the one that does native development for the platform you're on. In
other words, if you're on a 32-bit system, choose the option that does 32-bit
development, and if you're on a 64-bit system, choose the options that does 64-bit
development. This correct choice may not always be clear from the names of the
options, but the command window that's launched will display a message at the
top saying:

"Setting environment for using Microsoft Visual Studio 20xx x86 tools."
or
"Setting environment for using Microsoft Visual Studio 20xx x64 tools."

so you'll know if you've chosen the correct one.

-OR-

Create a command window and run a batch file provided by Microsoft to set up
your command window for the next step. The batch file is Program Files
[(x86)]\Microsoft Visual Studio <version>\VC\vcvarsall.bat

Next, do the following:

 C:> REM cd to the place where you extracted the kit.
 C:\your_kit> cd x86_w4 (or x86_w3. x64_w3 or x64_w4)
 C:\your_kit\x86_w4> nmake

Unix or Mac:

(Note: you have already performed these steps when you did the demo earlier)

 % gunzip platform.tar.gz
 % tar xvf platform.tar

 % ./INSTALL
 % cd platform
 % make

All platforms:

RLM kits are pre-built for ISV "demo", with licenses that expire in 30-60 days
after the RLM kit release date. If your demo license has expired, you will need to
put the new license you received from Reprise Software into the file
license_to_run.h in the src directory. If you have purchased RLM, you will need
to edit license_to_run.h to replace the license there with your permanent license,
and you will also need to edit the makefile in the binary directory (x86_w* or
x64_w*) to change your ISV name.

If you are using Java, there are a few additional steps required. These are
described in the RLM Reference Manual.

For the curious, the detailed contents of the RLM kit are contained in Appendix B
- RLM Kit Contents on page 25.

 Step 3: Add RLM API calls to your application

Using the example rlmclient.c as a guide, add the RLM api calls to your
application. You will need rlm_init() and rlm_checkout() calls at a bare
minimum, however it is good practice to call rlm_checkin() when you are finished
with the license, and rlm_close() if your program makes no further licensing calls

Once you have done this, compile your application using the RLM include files in
the directory <kit_dir/src>, and link with the RLM client library.

You're done!

Now that your application has been built with the RLM calls included, copy the
example license file and edit it with your product names, etc. Use the rlmsign
utility to sign the license file, and experiment with some node-locked and floating
licenses. Don't forget to read the note on your public-private key pair below.

An important note on your public-private key pair

Step 2, above, created a public-private key pair for you as part of the make (or nmake)
command, or build in Visual Studio. Before you use RLM in your product, you need to
create a public-private key pair that you will use for all your licenses, and you should do
this only one time. The key pair will affect the licenses you create, and you want to be able
to process older license keys with newer versions of your software. Note that you should do
this once, not once per platform you install.

You can safely ignore the remainder of this note for now, but you should return to this and
understand the implications before you begin your RLM production implementation.

To create your key pair, run the rlmgenkeys utility. rlmgenkeys creates a pair of files:
 rlmpubkey.c - your public key - this gets built into your application
 rlmprivkey.c - your private key - this gets built into rlmsign to create your license
keys

To run rlmgenkeys:

 % cd kit-dir
 % cd src
 % ../platform-dir/rlmgenkeys

Where:

 kit-dir is the directory where the RLM kit resides, and
 platform-dir is the RLM binary directory for the machine on which you are running.

If you do not share src directories on your various platforms, run rlmgenkeys once and copy
the resulting files to all the other src directories you use. Once you have created your key
pair and installed it in the src directories in all your RLM kits, do a "make" in each kit to
update the rlm.a library.

You should be very careful with these two files. DO NOT LOSE THEM. Do not allow
your private key file (or rlmsign) outside your company. If your private key file (or
rlmsign) becomes compromised, others will be able to make licenses for your products. Once
you generate these files, you should copy them to a safe place where they will not be lost,
and where they will be secure.

When you upgrade to a newer version of RLM, you will be asked for the location of these
two files, so that the new version will generate compatible keys with your older versions.

Making Your Product Production-Ready

You now know how to integrate RLM into your product. This chapter describes
considerations for a good RLM implementation.

If you are evaluating RLM, you can skip this chapter for now. You will want to
return to it later for guidance on how to make your product ready to ship.

Productizing your licensing implementation

In order to make your license management production-ready, there are 4 main
steps:

1. Decide on your Licensing Strategy

2. Configure your RLM libraries with your permanent options

3. Package your software for shipment

4. Prepare to create licenses for your customers

These steps are described in the following sections.

 Step 1: Decide on your Licensing Strategy

RLM allows you to request and release licenses for products. The license for a
product has certain attributes, which are described in the license grant itself
(which is contained in the license file). The most basic license attributes are:

 ISV name (you pick this when you purchase RLM)
 Product name
 Highest Version supported
 the node identification, since all RLM Embedded licenses are node-locked.
 Expiration date

Before you integrate RLM into your application, you must decide which products
you wish to license and select the product names for the licenses. It is generally
recommended that you choose names that correspond very closely to the name
which your customer purchases - it makes license administration much more
straightforward for your customers if the name of the product in the license is the
same as what they purchased. Note that the product name must be less than 40
characters.

In addition, each license request will specify a version. The two main strategies
for selecting versions are either (a) make the version number match the major
version of your software, in which case a new license would be required by your

customers for each major release of your product or (b) only change the version in
the license request occasionally, when you want to force your customers to
purchase a new license.

So, before you start to integrate the code into your application, you should decide:

 Where do you want to request and release licenses
 What is the name of the license(s)
 What license version to request.

(Note: There is more information about these issues in the chapter on Creating
Licenses.)

Generally, the first two decisions will stay the same over the life of the software
product, while you will update the license checkout version from time to time.

 Step 2: Configure your RLM libraries with your permanent options

There are 4 configuration items you must complete before you build your RLM
kit:

 Install your permanent RLM license into license_to_run.h
 Create your public/private key pair, which is done one time only (See the
note in the last chapter.)
 Configure your RLM parameters in the file rlm_isv_config.c
 Modify the makefile to change the ISV name "demo" to your permanent
ISV name.

To install your RLM license, edit the file src/license_to_run.h, using the
parameters you received in the email from Reprise Software. (Note: RLM kits are
pre-built with demo license keys which expire in approximately 2 months from
the date of kit release, so you may be able to skip this step if you are evaluating
RLM).

Your applications are built from components supplied by Reprise Software. You
need to provide 2 custom inputs for the build:

 Your Public Key, for license key verification - rlm_pubkey.c - (This was
done in step #2, above. See Create your Keys).
 A file of RLM customizations called rlm_isv_config.c (this file is contained
in the src directory on the kit)

rlm_pubkey.c is created by the rlmgenkeys utility. You should run this only once
to create your public/private key pair. Once you create these files, save them - if
you lose one of these files, you will no longer be able to generate license keys
compatible with older versions of your software.

rlm_isv_config.c contains calls to:

 set up your ISV name
 install your RLM license (do not change this call)
 register ISV-defined hostids, and
 include or exclude code for optional hostids (e.g., dongles, etc)

 Edit this file before compiling your applications.

Once you have created these 2 files you are ready to link your applications with
the RLM libraries.

 Step 3: Package your software for shipment

With RLM, you specify nearly all licensing options in the actual license that you
ship to your customers. However, there are a few issues that you need to consider
before you ship your application:

 Review the RLM API calls you make in your application to be sure that you
use product names that are suitable (we strongly recommend using the name
of the product that is in general use), and that the version numbers are correct.
If you intend for your customers to be able to use old licenses from your
product, be sure that the version number in the rlm_checkout() call is
appropriate.
 If we have provided you with special debug libraries, make sure you use the
non-debug libraries from the standard kit for your release.
 Ensure that you have included the RLM License Administration Tools in
your distribution kit.
 Review the Best Practices for RLM Integration section and ensure that your
product and installation are well-behaved.

Reserved Product Names
In general, your product names need only be unique to your company.
However, any product name beginning with the 4 characters "rlm_" is
reserved.

 Step 4: Prepare to create licenses for your customers

You will want a system in place to fulfill licenses for your customers before you
ship your product. Review the Creating Licenses chapter on page 21 to chose the
way you will do your license fulfillment.

Using RLM with the Visual Studio GUI

If you use the Visual Studio GUI interface on Windows, the procedure to configure the
RLM libraries is as follows:

 In a command window, build the RLM SDK as specified in Installing RLM. You need
do this only once per release of RLM.

 In your project settings / properties in Visual Studio:

 Under C/C++, add <RLM SDK path>\src to the Additional Include Directories
(where <RLM SDK Path> is the path to the installed RLM SDK)
 Under the Link/Input/Additional Dependencies or Additional Library Path,
add <RLM SDK path>\<platform>\rlmclient.lib (where <platform> is
x86_w3, x86_w4, x64_w3, or x64_w4.

 Under the Link Command Line or Project Options section, make sure the
following libraries are included:

 ws2_32.lib
 Advapi32.lib
 Gdi32.lib
 User32.lib
 winhttp.lib
 netapi32.lib
 kernel32.lib
 oldnames.lib
 shell32.lib
 libcmt.lib
wbemuuid.lib
commsupp.lib
ole32.lib
oleaut32.lib
In addition, include these libraries if you're using VC++ 2015 or later:
libvcruntime.lib
libucrt.lib

Then you will be able to use RLM in your project without leaving the GUI.

Using RLM with .NET - See the RLM Reference Manual for detailed instructions.

Using RLM with Java - See the RLM Reference Manual for detailed instructions.

javascript:;

RLM Getting Started Guide

Best Practices for RLM Integration

Our experience supporting thousands of FLEXlm ISVs and License
Administrators has taught us that certain design decisions can cause long-term
support problems. While we have made every effort to remove options from RLM
which cause License Administrator confusion with little corresponding benefit,
there are still things that you can do to make things easier for your customer's
installation and support.

In this section, we attempt to provide a framework for how well-behaved
applications use RLM. Adherence to these guidelines, while not strictly
mandatory, will be greatly appreciated by your customer's License Administrators
who will see more consistent implementations from ISV to ISV. This will also
translate into support savings for you, as applications from different ISVs will
behave in a more consistent fashion.

Product names

The name you use to check out a license for a product should be as close to the
name of the product you sell as possible. Fewer checkouts per product are
generally better from an License Administrator support and understanding
standpoint. In the early days of license management, companies literally "went
crazy" adding checkout calls to smaller and smaller pieces of their application,
which resulted in several licenses required to run one product. Resist the
temptation to do this. If your product is a schematic editor, you probably don't
need checkout calls to license the code that reads and writes the data files. You
might, but probably not.

Reprise Software considers it best practice to:

Use the name from your price list in the rlm_checkout() call, or a name as close to this as
possible.

Use as few rlm_checkout() calls as possible to accomplish your licensing strategy. Why? See Use
Few Checkout Call, below

AVOID THE USE of license text fields (such as customer, contract, etc) to control how your
application behaves, other than presenting this data to the user.

DO NOT USE the rlm_license_xxxx() calls (other than rlm_license_stat()) to do anything beyond
displaying information to your user.

Page 19 of 29

RLM Getting Started Guide

Installation of your product and finding the licenses for it to operate

When you integrate RLM into your product there are issues concerning delivery
of your product and the licenses for it to operate. As you already know from the
chapters on Integrating RLM Into Your Product, and The License File, there are a
few ways that your application can locate the licenses it needs to operate:

 RLM_LICENSE (or <ISV>_LICENSE) environment variable
 options you provide to your user to specify a license location, and
 licenses present in your product's binary directory

Reprise Software considers it best practice to:

AVOID using RLM_LICENSE or <ISV>_LICENSE as part of your installation scripts or
adding definitions of these variables to your user's environment. If you want to set a default license
file, you should do this by locating the license file (or a link to the license file) in the directory
with your binaries, or by using the optional license location in the first parameter to rlm_init().

ALWAYS leave RLM_LICENSE and <ISV>_LICENSE environment variables unset - so the
License Administrator can override any defaults you have specified.

ALWAYS provide the path to your binary as the second parameter to rlm_init(). In this way,
your customer's License Administrator will know that they can put the license file (or a link) in
this directory and it will be the "last resort" license file to be used.

Use Few Checkout Calls

The recommendation to use as few checkout calls as possible is made in response
to our experience in talking with many end users. In general, the more fragmented
into separate license domains an application becomes, the less end users
understand the licensing behavior and the less satisfied they are. In an ideal world
(from the end user's point of view), an application would need to check out 1
license in order to run,and the name of that license would be the name of the
application.

In practice, it's often quite reasonable for ISVs to use multiple license names in an
application - just keep it within reason. A good rule of thumb is to use distinct
licenses for things you charge extra money for. It seems obvious, but many ISVs
have gone far, far beyond that - to the dissatisfaction of their customers.

Page 20 of 29

RLM Getting Started Guide

Creating Licenses

When you ship your product to your customers, it will require a license to run.
Generally, you want to grant different license rights to each customer. In order to
do that, you create a unique license file for each customer.

The license file consists of lines of readable text which describe the actual license
grants to your customers. For a complete description of the license file format, see
the RLM Reference Manual.

There are three main ways to create and ship licenses:

▪ standard rlmsign utility

▪ custom license generator built with rlm_sign_license() API call

▪ RLM Activation Pro

rlmsign – the standard License creation tool

RLM Embedded is shipped with a license creation tool called rlmsign which can
be integrated into your fulfillment process. This tool reads a template license file
and computes the license key for each license contained in the file. This license
key authorizes the license and prevents tampering with the license parameters.

Using rlmsign:

 rlmsign license_file [bits-per-character]

rlmsign reads license_file, computes the license keys for all the included licenses
that specify your ISV name, and re-writes the file with the updated license keys.

The optional parameter bits-per-character is one of 4, 5, or 6, and specifies the
character encoding of the resulting license key. If not specified, bits-per-
character defaults to 5.

 bits-per-character of 4 results in license keys consisting of hexadecimal
numbers only. The resulting key is approximately 92 characters in length.
 bits-per-character of 5 (the default) results in license keys consisting of
uppercase letters and numbers only. The resulting key is approximately 74
characters in length.
 bits-per-character of 6 results in license keys consisting of upper and lowercase
letters, numbers, and the 4 special characters ('*', '=', '+', and '~'). The resulting
key is approximately 62 characters in length.

Page 21 of 29

RLM Getting Started Guide

License creation API – rlm_sign_license()

In some cases, it is more convenient to build the license in-memory and sign that
license directly before it is written to a file. In general, it is better to create the
licenses in a file and use rlmsign to sign the licenses, however an API call is
available for cases where this is not practical.

RLM has the rlm_sign_license() API call to sign a license line in-memory. For
details on the rlm_sign_license() API call, see the RLM Reference Manual.

RLM Activation Pro

RLM Activation Pro is an optional add-on to RLM which allows you to give your
customer an activation key which then allows your customer to retrieve their
license from your website at a later time. The activation key is a short string
(resembling a credit-card number) which can be generated in advance. Once the
customer knows the system where they wish to use the software, the RLM
activation software creates the license and transmits it to the user, creating the
license file for them. Details of RLM Activation Pro are in the RLM Activation
Pro Manual.

Should your activation needs exceed the capabilities of RLM Activation Pro,
Reprise Software recommends a relationship with one of our License Fulfillment
Partners. See our website Partner Page for more information on our Fulfillment
Partners.

Reserved Product Names

In general, your product names need only be unique to your company. However,
any product name beginning with the 4 characters "rlm_" is reserved, and should
not be used by you for your products.

Page 22 of 29

http://www.reprisesoftware.com/partners.htm

RLM Getting Started Guide

Appendix A – RLM Example Client Program

This example program (rlmclient.c) is contained on the RLM kit in the examples
directory. Use this as an example of how to use the RLM API calls.

/**

 COPYRIGHT (c) 2005, 2018 by Reprise Software, Inc.
This software has been provided pursuant to a License Agreement
containing restrictions on its use. This software contains
valuable trade secrets and proprietary information of
Reprise Software Inc and is protected by law. It may not be
copied or distributed in any form or medium, disclosed to third
parties, reverse engineered or used in any manner not provided
for in said License Agreement except with the prior written
authorization from Reprise Software Inc.

 ***/
/*
 * Description: Test client for LM system
 *
 * Usage: % sampleclient [product [count [version]]]
 *
 * Return: None
 *
 * M. Christiano
 * 11/27/05
 *
 */

#include "license.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef _WIN32
#include <unistd.h>
#include <strings.h>
#endif /* _WIN32 */

static void printstat(RLM_HANDLE, RLM_LICENSE, const char *);

int
main(int argc, char *argv[])
{
 RLM_HANDLE rh;
 RLM_LICENSE lic = (RLM_LICENSE) NULL;
 int x, stat;
 char *product, p[RLM_MAX_PRODUCT+1];
 int count = 1;
 const char *ver = "1.0";

rh = rlm_init(".", argv[0], (char *) NULL);
stat = rlm_stat(rh);
if (stat)
{
 char errstring[RLM_ERRSTRING_MAX];

(void) printf("Error initializing license system\n");
(void) printf("%s\n", rlm_errstring((RLM_LICENSE) NULL, rh,

errstring));
}
else
{

/*

Page 23 of 29

RLM Getting Started Guide

 * Use the program name as the license name
 */

if ((product = strrchr(argv[0], (int) '/'))) product++;
else if ((product = strrchr(argv[0], (int) '\\'))) product++;
else product = argv[0];
strncpy(p, product, RLM_MAX_PRODUCT);
p[RLM_MAX_PRODUCT] = '\0';

/*
 * Don't want .exe
 */

if ((product = strchr(p, '.'))) *product = '\0';
product = p;

/*
 * If product name specified, override program name
 */

if (argc > 1) product = argv[1];
if (argc > 2) count = atoi(argv[2]);
if (argc > 3) ver = argv[3];
lic = rlm_checkout(rh, product, ver, count);
printstat(rh, lic, product);

}

(void) printf("Enter <CR> to continue: ");
x = fgetc(stdin);

if (lic)
{

#if 0
/*
 * rlm_checkin() isn't necessary if you aren't going
 * to do anything else on the handle (other than check
 * in licenses). If you are using a handle created
 * with rlm_init(), then rlm_checkin() doesn't hurt
 * anything. But if you use a handle created with
 * rlm_init_disconn(), then rlm_checkin() causes an extra,
 * unnecessary network connection to the license server.
 */

rlm_checkin(lic);
#endif

rlm_close(rh);
}
return(stat);

}

static
void
printstat(RLM_HANDLE rh, RLM_LICENSE lic, const char *name)
{
 int stat;
 char errstring[RLM_ERRSTRING_MAX];

stat = rlm_license_stat(lic);
if (stat == 0)

(void) printf("Checkout of %s OK.\n", name);
else if (stat == RLM_EL_INQUEUE)

(void) printf("Queued for %s license\n", name);
else
{

(void) printf("Error checking out %s license\n", name);
(void) printf("%s\n", rlm_errstring(lic, rh, errstring));

}
}

Page 24 of 29

RLM Getting Started Guide

Appendix B - RLM Kit Contents

Each RLM kit (for a particular platform) is contained in 4 subdirectories:

 Machine-independent subdirectory (src)
 Machine-independent examples subdirectory (examples)
 Machine-dependent subdirectory (name varies for each platform)

The Machine Independent (src) directory contains:

File Contents

license.h rlm include file

license_to_run.h License for RLM itself

 rlm_admin.h Admin API include file (optional product)

rlm_isv_config.c Configuration data for RLM

RELEASE_NOTES Release notes for this version of RLM

RLM_Reference.txt Pointer to RLM documentation on website

VERSION RLM kit version information

The Machine Independent (examples) directory contains:

File Contents

act_api_example.c Sample client-side activation code

activation_example.html Sample HTML page for activation

actpro_demo.c Demo program for activation pro

detached_demo.c Sample code to implement a detached demo

example.opt
Example License Administration option file

(UNUSED in RLM Embedded)

integrate_older.c
Example code for integrating RLM alongside

an older LM

isv_hostid_example.c Example rlm isv-defined hostid

rehost_example.c Example program using a rehostable hostid

rlm_transfer.c
Example ISV-defined license transfer code

(UNUSED in RLM Embedded)

rlmclient.c Example rlm application program

roam_example.c
Example code to implement license roaming

(UNSED in RLM Embedded)

unsupported/ Various unsupported examples

Each Unix/Mac Platform-dependent directory contains (before executing "make"):

Page 25 of 29

RLM Getting Started Guide

File Contents Notes

example.lic Example license file Created by INSTALL

librlm.a Symbolic link to rlm.a

makefile Makefile

rlm The generic rlm server UNUSED

rlm.a RLM library

rlmanon RLM logfile anonomizer UNUSED

rlmmains.a RLM main() functions for misc. programs

rlmutil RLM utilities

The Windows Platform-dependent directory contains (before executing "nmake"):

File Contents Notes

example.lic Example license file

isv_main.obj main() for ISV server UNUSED

isv_server.lib library for ISV server UNUSED

makefile Makefile

rlc.obj main() for Activation administration (rlc)

rlm.def RLM DLL export definitions

rlm.exe The generic rlm server UNUSED

rlm.res RLM version resource file

rlm_genlic.obj License generator object

rlm_mklic.obj main() for Activation license generator

rlmact.obj rlc object file

rlmanon.exe RLM logfile anonomizer UNUSED

rlmclient.lib RLM client library

rlmclient_md.lib RLM client library - compiled with /Md

rlmclient_mdd.lib RLM client library - compiled with /Mdd

rlmclient_mtd.lib RLM client library - compiled with /Mtd

rlmgen.obj rlc license generation module

rlmgenkeys.obj main() for rlmgenkeys utility

rlmsign.obj main() for rlmsign utility

rlmutil.exe RLM utilities

rlmverify.obj main() for RLM log file authentication utility UNUSED

x*_w*.vcproj
Visual Studio/Visual C++ project for configuring the

kit

The platform names for RLM follow the convention:

arch_[os][ver]

where:

Page 26 of 29

RLM Getting Started Guide

 arch is the Reprise Software name for the processor/chip architecture
 os is the Reprise Software identifier for the operating system, and
 ver is the Reprise Software identifier for our version of rlm OS or compiler
support (note: this is NOT the operating system version)

For example, x86_w4 refers to Windows VC++ 2015 and later on x86
architecture. . ppc_m1 refers to Mac OS on PPC architecture.

The Java directory (java_unix, java_win) contains:

File Contents

doc Directory of HTML documentation

makefile Makefile

rlmVVRB.jar Java Library (VV=ver, R=rev, B=build)

RlmClient.java Example rlm application program

rlmjava.def JNI DLL exports (Windows only)

INSTALL Java kit installation script (Unix only)

VERSION RLM kit version information

The dotnet directory (RLM .NET support) contains:

File Contents

Reprise
Visual Studio Project Directory for RLM .net

support

RLMTest
Visual StudioProject Directory for RLM .net Test

program

Page 27 of 29

RLM Getting Started Guide

Appendix C - RLM Hostids

RLM supports several different kinds of identification for various computing
environments, as well as some generic identification which are platform-independent.

RLM's host identification (hostid) types are:

hostid
type

meaning example Notes

ANY runs anywhere hostid=ANY

DEMO runs anywhere for a demo license hostid=DEMO

32 (or long)
32-bit hostid, native on Unix, non

X86 based platforms
hostid=10ac0307

On Windows, the 32-bit
hostid is the Disk Serial
Number

ip (or
internet)

TCP/IP address hostid=ip=192.156.1.3 always printed as "ip="

disksn Disk hardware serial number
hostid=disksn=WD-

WX60AC946860
Windows only

ether Ethernet MAC address hostid=ether=00801935f2b5
always printed without

leading "ether="

uuid BIOS uuid
hostid=uuid=699A4D56-

58BF- 1C83-D63C-
27A8BEB8011A

Windows only

user User name hostid=USER=joe

host Host name hostid=host=melody

Note that since you will always be using these hostids on a LICENSE line, they will
always be preceded by “hostid=”. The actual hostid is the part after “hostid=”.

To determine the hostid of a machine, use the hostid type from the table above as input to
the rlmhostid command:

rlmutil rlmhostid hostid type

For example:

rlmutil rlmhostid long
or
rlmutil rlmhostid internet

Note: IP address hostids can contain the wildcard ('*') character in any position to
indicate that any value is accepted in that position.

Page 28 of 29

RLM Getting Started Guide

Appendix D – RLM Version Comparison

The RLM-embedded product provides nodelocked license capability only (ie, no license server).
This means that any license models supported by the license server are not available. The
following table summarizes the features that are available in each version.

RLM Full
Version

RLM Embedded

License Models

Nodelocked, uncounted x x

Nodelocked, single x x

Nodelocked, counted x

Floating x

License delivery

Browser-based license generator x x

Internet activation Option Option

Advanced Features

License hold/minimum checkout time x

License issue date x x

License roaming x

License version x x

Named-user licenses x

User-based, host-based licenses x

 License features/options control x x

Cloud computing support x

License platform restrictions x x

Replacement licenses x x

Upgrade licenses x

License start dates x x

License expiration dates x x

TerminalServer/VM support x x

License soft limits (overdraft) x

License sharing x

License timezone restrictions x x

Detached Demo Licenses x x

Page 29 of 29

